MSIIPL_THU’s Slot-Filling Method for TAC-KBP 2015

Yangcheng Zhang'?, Hengsheng Liu'?, Gang Zhao'2, Ji Wu'*
! Department of Electronic Engineering,
Tsinghua University, Beijing, China
2zhang-ycl3, zhaogl2@mails.tsinghua.edu.cn
31iuhs_ts@tsinghua.edu.cn

4

Abstract

This paper presents the design and implemen-
tation of our first English slot filling system.
The slot filling task aims at extracting attribute
values of the given entities. The core of the
system is a set of supervised per-relation clas-
sifiers, trained by a scheme known as distant
supervision. We use Freebase and Wikipedia
to generate our training query-filler pairs. An-
noted Gigaword received from the organizer is
used to train our models. For the retrieval of
answer candidates, we use sentences retrieval
in combination with query expansion in some
certain ways. Relation models rely on a fea-
ture representation focusing on surface skip n-
grams and the shortest dependency path which
connects an query-value pair. A Rule-based
method is also added to our system as a sup-
plement to improve the performance. Evalua-
tion results show the strength and weakness of
our technique.

1 Introduction

This is the first year that MISSPL_THU partici-
pated in the Slot Filling task of TAC’s Knowledge
Base Population. English Slot Filling is a task to ex-
tract attribute values of a given entity(person or or-
ganization) from large collection of documents. The
evaluation is done on 41 relations where there are
two arguments. One argument is the query entity
while the other has to be extracted from the speci-
fied document collection.

Generally, participants will face several main
challenges in such a task [Benjamin et al., 2012]:

1. How to retrieve all documents and sentences
from the specified text collection.

wujli eel@mail.tsinghua.edu.cn

2. How to model both the contexts that express a
relation and corresponding relation arguments.

3. How to generating training data to train a mod-
el.

In our work, we prefer using shallow machine
learning algorithms rather than deep linguistic anal-
ysis. Since a query may have several coreferential
name variants, we expand a given query with some
suitable variants generated by rules or found in the
context. Then we retrieve all these expanded query
names using Lucene! in the training or test docu-
ment set. The training data for the distant supervi-
sion [Mintz et al., 2009] are acquired from Freebase?
and Wikipedia 3. To improve the performance, we
also use the rule-based method as a supplement.

The structure of the paper is as follows: We de-
scribe our system pipeline in Section 2.1. And from
Sections 2.2 to 2.7, each component of our architec-
ture will be discuss minutely. Section 3 presents the
training details of the relation classifier. In Section
4, we analysis the results achieved in the TAC KBP
2015 slot filling track.

2 Slot Filling Pipeline

2.1 Overview

The pipeline of our slot filling system is shown in
Figure 1. We first preprocess the given documen-
t collection (Section 2.2). Then each query entity
will be sent into our system and expanded to oth-
er possible name variations (Section 2.3). The new
queries include the variants and the original query.
The new queries are used to retrieve sentences (or

"http://lucene.apache.org/
“http://www.freebase.com/
*https://en.wikipedia.org/

Query
Expansion

Query

]

Sentence(Document)
Set

Preprocessing

Candidate
Fillers

I

Classifier Predicition

Rule-based(Pattern)
Match

!

Post-processing

Figure 1: Pipeline of our slot filling system

documents) that contain information about the orig-
inal entity(Section 2.4). Now we have some can-
didate sentences which contain both a query in the
new queries and a token sequence of the appropriate
slot type. To decide whether a candidate slot filler
is correct, we should extract some features from the
candidate sentences in a certain way, then use the
trained binary classifier to judged the instances (Sec-
tion 2.5). We also integrate a rule-based or pattern-
based module with the classifier algorithm. Such a
module is expected to match relation-specific pat-
terns by working on the sentence surface strings
(Section 2.6). The last stage of our pipeline is to
post-processed the answers returned by the classifier
and pattern-based matching. Answers for dates will
be normalized, and redundant fillers are removed
(Section 2.7).

2.2 Preprocessing

We first use the Stanford CoreNlp* package to an-
notate the linguistic features of all the given test cor-
pus. The package includes the part-of-speech (POS)
tagger, the named entity recognizer (NER), SUTime,
the dependency parser and the coreference resolu-
tion. For some reasons, we make all the above an-
notation except the last one. Then we index the sen-
tences with their annotations using Lucene. Another

*http://nlp.stanford.edu/

important work is to collect enrich query-filler train-
ing pairs. We use relations and relation instances
from Freebase and Wikipedia infobox. Because the
properties in Freebase, Wikipedia and TAC-KBP s-
lot filling track are almost different, we manually
map the properties in Freebase and Wikipedia to
those in TAC-KBP. At this stage, we also categorize
all the slot values into some domain types. The NER
tool is used to recognized PERSON, ORGANIZA-
TION, LOCATION, DATE, NUMBER etc., while
URL, TITLE, CRIMINAL CHARGE, CAUSE OF
DEATH and so on are mainly recognized using rules
and pre-prepared lists.

2.3 Query Expansion

A query expansion module is necessary to im-
prove the Recall of a slot filling system. Such a mod-
ule should identify as many as possible name vari-
ants of the given query. For ORG type, we expand
the query by ignoring the corporate suffixes (e.g.
”Ltd”, ”Corp.”). We also searched the acronyms and
full names of the query in the context. Using the
coreference resolution tool in Stanford CoreNLP, we
get the coreference names of the given query. To i-
dentify the alternate names of a query, we add a bit
rules to our system. For example, if the query is fol-
lowed by some tokens like “known as”, “called” and
so on, then it is very likely to find the variant or filler
behind such tokens. Benjamin et al. [2012] used
a translation models to computed from Wikipedia
link anchor text. We also try such a model for query
expansion but get no performance improvement re-
grettably. Too many variants for a query may lead to
ambiguity and precision problems. We remove some
unspecific alias forms in the expansion by compar-
ing the similarity of the variants with the original
query.

The first run we submitted used the module, and
the second run not. We will discuss the result in
section 4.

2.4 Sentence Retrieval and Candidate
Generation

We use the Apache Lucene tool to index the sen-
tences in the training and test corpus. Indexing the
whole document is an considerable alternative. The
original query and its variants are used to index. The
aim is to obtain as many sentences containing the

query or an alias and a token sequence tagged with
the expected slot type as possible. We restrict the
number of sentences retrieved by 500 per query. For
the relations with unusual slot types, such as TITLE
and NATIONALITY and so on, we provide lists to
find a match. We also use Freebase and Wikipedia
to collect many entries of the corresponding types.
Slot types like CAUSE_OF_DEATH and URLs etc.
are matched by rules.

2.5 Features Extract and Relation
Classification

Features are extracted from the above candidate
sentences and then used to build instances for the
classifier. We use features including token n-gram-
based and shortest dependency path between the
query and the candidate filler.

The token n-gram-based features are similar to
those of Benjamin et al. [2012]. A common token
feature is the n-grams between the query (referred
to as ARG1) and the filler (referred to as ARG2).
We use such a feature up to length 3. Another token
feature is called skip n-grams, where we remove the
stop-words and wildcard some tokens in the middle
of the n-grams between ARG1 and ARG2. Such a
feature is more robust and can increase performance.
The left and right context outside the arguments are
also available token features. They have a length
up to 3 (including the wildcarded argument). In our
experiments, we additionally use a feature showing
whether ARG1 or ARG2 comes first. An example
in Figure 2 shows how to extract features for an in-
stance.

The last feature is the shortest dependency path,
which is achieved using the Stanford CoreNLP
package. Also we wildcard some terms in the path to
enhance the robustness of the feature. A query-filler
pair which has a long dependency path more than 7
is discarded. Indeed we find too long path generally
indicates an error pair.

To train a binary classifier per-relation, we use the
handy tool called LIBLINEAR? with logistic regres-
sion (LR). We train the LIBLINEAR model on dis-
tant supervision data (see Section 3). The trained
classifier scores each sentence instance. If the same
fillers appear in several sentence instances, we re-

>https://www.csie.ntu.edu.tw/ cjlin/liblinear/

serve and consider the instance with the highest s-
core in the next steps. The slot filling task of this
year add a requirement to use the retrieved answers
and inverse the slots to generate new answers. We
just use the relevant old classifiers and some new
patterns manually built to complete it.

2.6 Pattern-based Matching

There are patterns which indicate a specified re-
lation between the given query and fillers. In the
task guidelines, each relation has a description of
definitions and examples. Such examples direct us
to judge if a particular context holds a certain re-
lation. At this stage, we manually construct a bit
patterns according to the given examples in the task
guidelines. The following is an example sentence
for per:stateorprovince_of_birth in the task guide-
lines of 2015

Harper, born in April of 1959 in Toronto, Ontario
So we can build a pattern like this
ARGI, born *in * ARG2

We use ARGI and ARG?2 to represents the query
and the slot filler respectively. Redundant tokens are
wildcarded by a character star (*). Such a pattern
can match a high precision result, which almost al-
ways contains the correct slot filler we need. We
construct patterns more or less for each relation, and
mainly use them to validate the sentences discarded
by the trained classifier. For some relations such as
CAUSE_OF_DEATH and CHARGE, matching the
sentences by patterns has a better performance than
the classifier in our experiments. Table 1 shows the
effect of patterns matching. We will discuss the re-
sult in Section 4.

use patterns matching P R F
no 4.0% | 9.1% | 5.6%
yes 27.5% | 7.0% | 11.1%

Table 1: show the effect of pattern matching

The shortage of this method is also apparent and
severe. It consumes human and is of limited cover-
age. Yan Li et al. [2013] designed an enhanced ad-

Relation: per:origin(Alan Bishop, Britain)

Candidate sentence: The man said fe is Alan Bishop, a London native and the first Britain citizen to be

awarded medals.

Feature examples:
BETWEEN_N_GRAM: ARGI1>#>

OUTSIDE_N_GRAM: ARG2>#citizen>#to>

SKIP_N_GRAM: native>###first>

Figure 2: An example of extracted token features. Only strings behind the colon are the features. Character
is used as a separator. To indicate whether the filler comes left or right of the query, we use characters >

(left) or < (right) to mark each token.

aboost pattern-matching system, which inspired by
the work of Grishman et al. [2010] and Snowball
(Agichtein et al. [2000]). It can automatically gen-
erate a lot patterns, and improve the system perfor-
mance to some extent.

2.7 Post-processing

The major work in this section is to fix the answer-
s achieved above to meet the requirements. For the
slots of DATE type, we used SUTime tool in Stan-
ford CoreNLP to normalize the temporal expression
to the required TIMEX?2 format.

The LOCATION slot has fillers which should
be countries or states/provinces or cities. We pre-
prepare a list of all countries and states/provinces
from Wikipedia. Fillers not in the list are regarded
as cities.

For single-valued relations, the highest ranked s-
lot filler is reserved, while the first 4 answers are
kept for the list-valued slots.

3 Training Models

The process of training is similar with that in the
work of Mintz et al. [2009]. We train a binary clas-
sifier using LIBLINEAR with logistic regression for
most of the relations. LIBLINEAR is a linear clas-
sifer for data with millions of instances and features.
It can quickly train a much larger set than LIBSVM®

Shttps://www.csie.ntu.edu.tw/ cjlin/libsvm

via a linear classifier.

The annotated Gigaword corpus is used as train-
ing set. We use Freebase and Wikipedia to get a
lot of query-filler training pairs for most of the slot-
s. The relations map from Freebse and Wikipedia
to TAC-KBP slot filling task is essential. Then the
positive training pairs are used to retrieve up to 500
sentences for each pair from the Gigaword corpus.
Sentences containing both the query and filler in a
pair are taken as positive examples. A relevant neg-
ative pair is constructed using the same query as the
positive pair, but the second argument is different
from the correct filler in the positive pair. The oth-
er requirement is that it should have the same slot
type with the correct filler. An example is (Barack
Obama, U.S.) for per:origin, then (Barack Obama,
England) is arelevant negative pair, and the sentence
contains (Barack Obama, England) is a negative ex-
ample. We change the number of negative examples
to decide a suitable proportion between negative and
positive examples. Table 2 shows the result of differ-
ent proportion. We will discuss the result in Section
4.

Features are extracted from each sentence. The
features of those sentences belong to a specified pair
are combined into a rich feature vector. Such a vec-
tor is a numerical instance of the relevant relation.
Then we use these vectors to train a binary classifi-
er for most of the relations. For unbalanced data, we
set some weights before training. We tune the hyper-

N/P P R F

0.001 | 18.8% | 10.5% | 13.5%
0.01 | 23.0% | 10.0% | 13.9%
01 |275% | 7.0% | 11.1%

Table 2: Result of different negative/positive exam-
ples proportion. N/P is the proportion of negative
examples and positive examples; P, R and F are the
Precision, Recall and F-value of our system respec-
tively

parameters in the model using cross validation.

The distant supervision will introduce much
noise. So noise reduction module is necessary. We
try to combine a multi-instances multi-labels (MIM-
L)[Mihai et al. 2012] module with our system, but
can’t complete eventually with limited time.

4 Results And Analysis

We submit four runs for the English Slot Filling
task this year. The last two runs have some problems
in the models, so have scores closed to zero. Table 3
shows the first two evaluation results.

All'P | AR | AILF
runl | 0.1901 | 0.0595 | 0.0907
run2 | 0.2143 | 0.0524 | 0.0842

Table 3: the evaluation results

The first run we submitted use query expansion,
and the second run not. Both runs use the patterns
matching. With limited time, we do not test another
modules in the runs. But we can get some inspiration
from the earlier experiments.

While our query expansion module has uncon-
spicuous effect on enhancing the performance of
our system, the pattern matching module brings in
a huge improvement. Both modules are based on
the classifier algorithm. From table 1, we find our
classifier algorithm is too rough.

The evaluation results show the Recall of our sys-
tem is too low. We think there are two main reasons
for this fact. First, our LIBLINEAR-based supervi-
sion approach is not well. Apart from the classifier
itself, we use a lot training data from Freebase, then
retrieve the candidate sentences in Gigaword corpus,

and we train the classifiers following the assumption
of distant supervision method. This process intro-
duce a lot noise with which we have no special mod-
ule to deal. Second, Our retrieval module including
query expansion does not work well. In our early
experiment on the test corpus of last year, we find
the correct fillers in our candidate sentences are less
than half. After using NER to match the pre-defined
slot types and extracting features to form numeri-
cal instances, the remain examples contain no more
than one-fourth correct fillers. Then the residual ex-
amples should still be classified by the trained clas-
sifiers. Eventually, most of the correct fillers are fil-
tered out, resulting in a poor Recall. Also we do no
co-reference resolution, and only build a bit patterns
to matching the relations. Another weakness is that
we get poor performance in the hopl.

Next we will first introduce a noise reduction
module to improve the performance of classifiers.
And We may choose another exquisite model to try
and tune the parameters detailedly. Also we will
spend time improving the patterns matching mod-
ule to get more high-precision candidates. To solve
the problem that the query and the correct fillers be-
long to different sentences, we should consider how
to retrieve implicit candidates from document set,
which includes the techniques of inference and co-
reference resolution.

5 Conclusion

The paper gives an overview of our submission to
the TAC-KBP 2015 slot filling task. We develop our
slot filling system combining pattern-based method
and classifier algorithm. The evaluation result shows
the strength and weakness of our approach. In the
future, we will try to improve the performance of
existed modules and introduce some new modules
to obtain a whole advance.

References

Benjamin Roth, Grzegorz Chrupala, Michael Wiegand,
Mittul Singh, Dietrich Klakow. 2012. Generalizing
from Freebse and Patterns using Cluster-Based Dis-
tant Supervision for KBP Slot-Filling. In Proceedings
of the Text Analysis Conference(TAC), 2012.

Mike Mintz, Steven Bills, Rion Snow, Dan Jurafsky.

2009. Distant supervision for relation extraction with-
out labeled data.

Yan Li, Yichang Zhang, Doyu Li, Xin Tong, JianLong
Wang. 2013. PRIS at Knowledge Base Population
2013,.

Bonan Min, Xiang Li, Ralph Grishman. 2013. New York
University KBP 2010 Slot Filling System., In proceed-
ings of TAC-2010.

Eugene Agichtein, Luis Gravano. 1999. Snowball:
Extracting relations from large plain-text collections,
Columbia University Computer Science Departmen-
t Technical Report CUCS-033-99, December 1999.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
Christopher D.Manning. 2012. Multi-instance Multi-
label Learning for Relation Extraction, Proceedings
of the 2012 Joint Conference on Empirical Method-
s in Natural Language Processing and Computational
Natural Language Learning, pages 455-465, Jeju Is-
land, Korea, 12-14 July 2012.

