Cold Start Knowledge Base Population with the Knowledge Resolver System
for TAC-KBP 2015

Hans Chalupsky
USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA, USA
hans@isi.edu

Abstract

This paper describes the Knowledge Resolver
system (KRes) and its performance on the
TAC-KBP 2015 Cold Start KBP task. KRes
is a logic-based inference system aimed at im-
proving statistical relation extraction by de-
duction and abduction inference towards the
best document-level interpretation. For the
2015 evaluation we focused on transitioning
our English Slot Filling system used in TAC-
KBP 2014 to the more complex Cold Start
Knowledge Base Population task. Our 2015
system has some slightly improved slot-filling
coverage of 22 slots (as compared to 19 from
last year, not counting inverses), and an im-
proved f1=0.24 measured on a 50 query slot
filling test set from TAC-KBP 2012 com-
pared to 0.212 of our 2014 system. We
used RPI’s Name Clustering toolkit to perform
cross-document entity detection. The integra-
tion of clustered entities with entities linked
by the UIUC Wikifier did not get ready in
time for the evaluation, hence, our submis-
sion is a baseline that we are currently improv-
ing upon by adding additional inference and
linking functionality. Our combined (ALL)
scores were f1=0.0938 (LDC MAX Micro)
and 0.0517 (SF Micro). Our system produced
good precision but low recall due to our only
partial coverage of slot types and the prelimi-
nary nature of our entity linking component.

1 Introduction

This paper describes the Knowledge Resolver sys-
tem (KRes) and its performance on the TAC-KBP
2015 Cold Start Knowledge Base Population task.

KRes is a logic-based inference system based on
the PowerLoom knowledge representation and rea-
soning system, aimed at improving statistical rela-
tion extraction by linking extractions from across a
section or whole document, and then using deduc-
tion and abduction to combine alternative extrac-
tions into the best document-level interpretation. We
call this story-level inference which we have applied
successfully for relation extraction and question an-
swering (Chalupsky, 2012). The TAC-KBP Cold
Start task elevates this problem of integrating alter-
native interpretations to the level of a whole corpus
or knowledge base, and we are now in the process
of generalizing story-level inference to knowledge-
base-level inference to support the goal of creating
a more coherent and complete knowledge base from
noisy individual document-level extractions.

This was our first participation in the TAC-KBP
Cold Start KB track and our third participation in
TAC-KBP overall. For the 2015 evaluation we fo-
cused on transitioning our 2014 English Slot Filling
system used in TAC-KBP 2014 (Chalupsky, 2014) to
the more complex Cold Start Knowledge Base Pop-
ulation task. Our 2015 system has some slightly im-
proved slot-filling coverage of 22 slots (as compared
to 19 from last year, not counting inverse slots added
by the Cold Start task), and an improved f1=0.24
measured on a 50 query slot filling test set from
TAC-KBP 2012 compared to 0.212 of our 2014 sys-
tem. We exclusively used RPI’s Name Clustering
toolkit to perform cross-document entity detection.
Its integration with entities linked by the UIUC Wik-
ifier did not get ready in time for the evaluation,
hence, our only submission is a baseline that we are

currently improving upon by adding additional in-
ference and linking functionality. Our final com-
bined (ALL) scores were f1=0.0938 (LDC MAX
Micro) and 0.0517 (SF Micro) according to the latest
scoring revision from February 2016. Our system
produced good precision (0.53 for hop-0 queries) but
low recall due to the preliminary nature of our en-
tity linking and discovery component, as well as our
only partial coverage of TAC-KBP slot types that ef-
fectively only addressed 22% of Hop-0+1 queries.

2 Approach

Figure 1 shows the overall architecture of our 2015
TAC-KBP Cold Start system. We begin with a
set of NLP toolkits (Stanford’s CoreNLP, CMU'’s
SEMAFOR and the UIUC 2011 Wikifier) which
are run exhaustively on the source document cor-
pus. This produces an annotation database for
each toolkit stored as a compressed archive of tool-
specific annotation files (one file per corpus docu-
ment). After that, the Knowledge Resolver rela-
tion detection and slot filling pipeline is run using
CoreNLP and SEMAFOR annotations as input and
performing pattern-based and statistical relation ex-
traction. After relation arguments have been linked
to names, the Slot Filler produces a set of KBP slot
hypotheses for each document whose arguments are
normalized names and values relative to that docu-
ment.

In order to produce a properly connected knowl-
edge base, slot arguments have to be converted into
KB entities that are linked across documents. To that
end, we convert all KBP slot hypothesis arguments
into a set of named entities that can be clustered
by RPI’s Name Clustering toolkit. This is slightly
different than its standard configuration, which uses
NYU’s ENIE named entity tagger to generate input
entities. In addition, since Cold Start query entities
might come from a source document where no rela-
tion was extracted by KRes, we collect named en-
tities detected by CoreNLP from across the whole
source corpus that match one of the extracted slot
hypothesis arguments. The resulting set of named
entities is then clustered by the Name Clustering
toolkit based on document similarity.

In the next step, the KB Assembler uses the set of
clustered entities and previously extracted slot hy-

potheses to generate a raw knowledge base. This
step also performs some filtering and normalization
such as eliminating slots with low confidence scores,
addition of inverse slots, generation of canonical
mentions and recording of provenance information.
Due to time constraints, for the 2015 evaluation, this
raw KB was what we submitted as our final and only
system result.

The dotted line from Wikified Entities to the KB
Assembler is a system component that was not ready
at evaluation time and is currently being completed.
Wikfied Entities can significantly improve the re-
sult of Name Clustering which is aimed primarily
at named entities that do not have corresponding
Wikipedia pages. Moreover, we are also currently
working on a KB Refiner to further improve the out-
put of the KB Assembler based on various constraint
checking and inference processes.

2.1 Corpus Preprocessing

In the preprocessing phase, we run a set of NLP
toolkits (Stanford’s CoreNLP, CMU’s SEMAFOR
and the UIUC 2011 Wikifier) exhaustively on the
source document corpus. This step is very similar
to what we did in 2014 (Chalupsky, 2014), so we
only briefly review these steps and components here.
The main difference is that we run on a significantly
smaller corpus, however, due to the short evaluation
window for the Cold Start task, it is still necessary
to run these steps on a high-performance computing
cluster.

2.2 CoreNLP

We used Stanford’s CoreNLP toolkit (version 3.3.1)
and ran the whole pipeline on each source document
to perform tokenization, sentence splitting, POS-
tagging, lemmatization, named entity recognition,
dependency parsing and within-document corefer-
ence resolution. CoreNLP is a very mature tool
suite, but problems arise nevertheless. For example,
documents that contain long lists of sports scores
can trip up the parser and coref systems and lead
to performance problems. Fortunately, CoreNLP
comes with options to restrict the maximum sen-
tence length and to continue even if processing lead
to an error which is very useful when processing
large document sets on a cluster.

KBP-TK
MALLET Name
(UMass) Clustering
(RPI)
* y N
et N[
CoreNLP POS,NER, Statistical
(Stanford) “/ Parses, Coref, “/ Relation
~~Mentions __~ Detector Sl
— MName |, Siot || K8 5 Cold Start
Source SEMAFOR J\\\Fﬁe_/ \ "Linker| | Filler | ~|Assembler | Refiner]
Corpus (@) Semantic / Patt :
P! Parses e = — — = T
based ?
J—— Relation :
Detector
_ _f__///_}\
L Wikifier Wikified | 0 N oo oo)
e Entities Knowledge Resolver
A g POWERLOOM

Figure 1: System architecture

2.3 SEMAFOR

SEMAFOR is a frame-semantic parser that was de-
veloped at CMU’s Language Technology Institute
(Das et al., 2014). Frame-semantic parsing is related
to semantic role labeling but with a much richer set
of semantic types and roles taken from FrameNet
(Fillmore et al., 2003). For example, for the sentence
“John has a job at a company” we get the following
semantic frames which can be used immediately for
the extraction of an employment relation:

Possession: has
Possession.Owner: John
Possession.Possession: job at a company
Being_employed: job
Being_employed.Employer: at a company
Businesses: company
Businesses.Business: company

Identical to our 2014 system, we are using SE-
MAFOR 2.0 which is not the most recent version,
but for which we have various existing tool and
translation support already. SEMAFOR 2.0 does not
directly support the processing of SGML-formatted
documents. Instead it expects a sentence list and
preprocessing with a tokenizer and the MST depen-
dency parser before it can be run. To run it ef-
fectively on sets of documents, we use CoreNLP
for sentence detection, then map multiple docu-
ments onto a single sentence list, run the SEMAFOR
pipeline on this list, and then map the results back

onto individual documents (with proper annotation
offsets) and translate them into a PowerLoom format
usable by KRes. We processed the 2015 source cor-
pus this way which produces one PowerLoom file
per input document.

2.4 UIUC Wikifier

We used the UIUC 2011 Wikifier (Ratinov et al.,
2011) to help with cross-document coreference of
slot arguments. The 2011 version uses the textual
information from a 2009 dump of Wikipedia with
2011 redirects but no other resources (a newer 2013
version of the UIUC Wikifier (Cheng and Roth,
2013) also uses relational information from DBPe-
dia, which is the reason why we did not use it in-
stead). As mentioned above, the linking between
Wikifier and Name Clustering outputs did not get
ready in time and is currently being developed.

2.5 Knowledge Resolver Pipeline

The core of our 2015 KRes Cold Start system is
built upon a slightly improved version of our 2014
slot filling system (Chalupsky, 2014). KRes is a
logic-based inference system based on the Power-
Loom knowledge representation and reasoning sys-
tem,! aimed at improving relation extraction through

"http://www.isi.edu/isd/LOOM/PowerLoom/

the exploitation of richer semantic information and
story-level inference.

The 2015 system adds relation extractors for
three additional slots (per:alternate_names,
org:alternatenames and per:schools_-
attended), and improves detection of
per:employee or member_of by using a
higher quality pattern-based extractor compared
to the statistical extractor used before. We also
further tuned title extraction and normalization.
These improvements increased the score on a 50
query test set from the TAC-KBP 2012 slot filling
task (which we did not participate in) from 0.212
to 0.24 using strict scoring on the gold standard
from that evaluation. Using anydoc scoring that
ignores the identity of the source document and
more relaxed value scoring that looks for a minimal
20% overlap between value extents improves this
score to f1=0.346.

KRes uses the Stanford CoreNLP toolkit for
all core language processing tasks such as tok-
enization, POS-tagging, sentence detection, NER-
typing, dependency parsing and coreference resolu-
tion. CoreNLP annotations (such as sentences, men-
tions, NER-types, parse trees, etc.) are then trans-
lated into a logic-based data model for the Power-
Loom knowledge representation and reasoning sys-
tem. SEMAFOR frame-semantic parses are handled
similarly and translated into our logic-based text an-
notation data model.

We use an extended version of PowerLoom (com-
pared to the publicly released version), that imple-
ments a variety of extensions relevant to NLP such
as an extensive data model to represent text annota-
tions, logic-based access to word lists and dictionar-
ies, dependency tree matching, fuzzy string match-
ing, various annotation translators, range indices for
efficient annotation inclusion inference, and a num-
ber of other utilities. These extensions allow us to
run the whole dependency pattern matching, feature
generation, inference and result generation process
via the PowerLoom inference engine.

2.5.1 Pattern-based Relation Detection

The pattern-based relation detector is very similar
to last year’s version and described in more detail
in (Chalupsky, 2013; Chalupsky, 2014). We only
briefly describe some of its features and function-

ality here. After processing a document through
CoreNLP, the pattern-based detector finds potential
relation matches based on various dependency pat-
terns. We developed patterns for nine of the TAC-
KBP relations:

per:age

per:children

per:employee_or_member_of

per:other_family

per:parents

per:siblings

per:spouse

per:title

Dependency tree patterns are represented as Pow-

erLoom list terms which are then interpreted by a
pattern evaluation predicate. For example, the fol-
lowing pattern would match simple possessive con-
structs such as “John’s father”:

(listof dg-poss = family-relation-word)

Elements in the pattern can be dependency
graph edge labels (such as dg-poss), named
or unnamed PowerLoom relations (such as
family-relation-word which accesses a small
special-purpose dictionary for indicators of family
relations), verbatim strings (such as prepositions)
or the special root anchor constraint indicated by ~.
This pattern would then match the path from “John”
to “father” in the following example dependency
tree for “There he met John’s father Frank™:

(There
RCMOD (met
NSUBJ he
XCOMP (Frank
NSUBJ (father
POSS John))))

More complex relationships can be expressed us-
ing the full expressivity of the PowerLoom logical
description language. For example, the following
kappa expression defines a more complex relation-
ship between a dependency graph and two argument
tokens 7x and ?y. This particular pattern would
match constructions such as “he was appointed to
Microsoft”, or “he was named White House press
secretary’”:

(?graph ?x ?vy)

(?root)

dg-subj ?graph ?root ?x)
dg-passive-tree ?graph ?root)
plausible-person-token ?x)
employment-verb-pattern

[kappa
(exists
(and

?root "A employs P as R")
(dg—-dep ?graph ?root ?y)
(different ?x ?root ?vy)
(plausible-organization-token ?y]

Such patterns can be named and call others re-
cursively if necessary. Dependency labels such as
dg-subj match all their more specialized versions,
such as, for example, dg-nsubj. Using this ap-
proach, documents are pattern-matched with Pow-
erLoom queries that retrieve all sentences and their
dependency trees, match them for any of the defined
relation patterns, and then assert any matches so that
they can be further analyzed and refined in subse-
quent processing steps such as name linking and slot
filling.

2.5.2 Statistical Relation Detection

For our 2014 system, a main goal was to ex-
ploit semantic information as extracted by the SE-
MAFOR frame-semantic parser to help with relation
detection. SEMAFOR provides a very rich semantic
vocabulary based on FrameNet, however, detected
frames are not necessarily normalized in a way that
is immediately exploitable by a relation detector.
For example, minor syntactic variations can produce
significantly different semantic representations. Let
us look at four simple examples with more or less
the same semantics:

1. John has a job at a company.

2. John works for a company.

3. John is employed at a company.
4. John is employed by a company.

Example 1 is the same we used above and cor-
rectly maps “job” onto a Being_employed frame
with the correct association of the employer role.
Example 2 maps “works” onto a Usefulness frame
with “John” being what is useful and “a company”
being the purpose of the Usefulness. Example 3
maps “employed” onto a Using frame with “John”
being the instrument of the Using. Example 4 gen-
erates the same but additionally identifies “by a com-
pany” as the agent of the Using. While all of these
interpretations are defensible in some form or other,
this illustrates that a rule-based approach similar to

what we use for the pattern-based relation detec-
tor would not be straight-forward and might have to
account for a large number of variations. For this
reason, we decided to use elements of SEMAFOR
parses as features in a supervised learning approach.
To this end, we built statistical relation detectors
for the following slot types:
per:alternate_names
per:cities_of_residence
per:countries_of_residence
per:statesorprovinces_of_residence
per:city_of_death
per:country_of_death
per:schools_attended
per:stateorprovince_of_death
per:origin
org:alternate_names
org:city_of_headquarters
org:country_of_headquarters
org:stateorprovince_of_headquarters
org:top_members_employees

Our relation detection approach first enu-
merates possible argument pairs for a rela-
tion in a given sentence. For example, for
org:top_members_employees we enumerate all
pairs of mentions of type organization and person.
Mention types come from NER-types detected by
CoreNLP, Wordnet, as well as gazetteers such as
title lists. Potential relation argument pairs are
restricted to be within a certain distance in the
dependency parse tree generated by CoreNLP.
We then use a binary maximum entropy classifier
for each relation (based on MALLET) to identify
instances of the relation. See (Chalupsky, 2014) for
more details on features used.

2.5.3 Name Linking

The name linking component is more or less iden-
tical to previous versions and described in more de-
tail in (Chalupsky, 2013). We only briefly describe
some of its features and functionality here.

Answers to TAC-KBP queries always involve at
least one named argument, the query name, and pos-
sibly a second named argument for the slot value as
is the case for family relations. Identifying names
and linking them to relation arguments is therefore a
central part of the task. We chose to separate relation
detection and name linking into two separate phases.
For example, when processing the sentence “After
John left his wife, Susan,” we would first detect

the spouse relation between “his” and “wife” and
then link those arguments to their respective names
“John” and “Susan” via pronoun coreference and an
apposition pattern. Decoupling these steps instead
of performing them in a single pattern match allows
us to reuse the same mechanism across several pat-
terns as well as statistically extracted relations. It
also makes the name linking step explicit which al-
lows us to more easily perform additional inference
when choosing between alternative candidate argu-
ments.

Given a relation argument x and the head n of a
named mention, we look for a link between the two
tokens as follows: we first check whether x = n,
and, if that fails, for a connection via one of these
dependency edges in this preference order: NN, AP-
POS, NSUBJ and DEP. Once a connection is found
a name link is established which will prevent a name
token to be linked to any other relation arguments in
a sentence. In the next step, relative and personal
pronouns are resolved to any named referents via
coreference links detected by CoreNLP.

2.5.4 Slot Filling

In the slot filling phase, we use the pattern
matches and name links established in prior phases
to extract TAC-KBP slot values for named men-
tions found in a document. We additionally per-
form some value normalization here (e.g., to nor-
malize age values or handle multi-element ar-
guments), and we map relation types such as
“cousin” onto the appropriate TAC-KBP slot (such
as per:other_family). We also perform some
simple inferences such as inferring employment
from top employment and to handle inverse slots,
e.g. infer per:parents from per:children and
vice versa. Normalization for place names is still
missing, which accounts for some redundancy and
inexact match errors.

At this point, we have a set of KBP slot hypothe-
ses for each document, that are basically elaborated
relation mentions with associated provenance infor-
mation, and whose arguments either are or are linked
to names somewhere in the document. In our slot
filling system, we would filter these slot hypotheses
based on the names in evaluation queries (and their
name variants). For the Cold Start system, we keep
all slot hypotheses and write them to an intermedi-

ate per-document results file which will be used in
subsequent steps to build a linked knowledge base.

2.6 Name Clustering

In order to produce a properly connected knowledge
base, slot arguments have to be converted into KB
entities that are linked across documents. To that
end, we convert all KBP slot hypothesis arguments
into a set of named entities that can be clustered
by RPI’s Name Clustering toolkit.” This is slightly
different than its standard configuration, which uses
NYU’s ENIE named entity tagger to generate input
entities. In addition, since Cold Start query entities
might come from a source document where no rela-
tion was extracted by KRes, we collect named en-
tities detected by CoreNLP from across the whole
source corpus that match one of the extracted slot
hypothesis arguments. The resulting set of named
entities is then clustered by the Name Clustering
toolkit based on document similarity.

2.7 KB Assembly

The KB Assembler uses the set of clustered entities
and the previously extracted per-document slot hy-
potheses to generate a raw knowledge base. This
step also performs some filtering and normalization
such as elimination of slots with low confidence
scores, generation of canonical mentions and record-
ing of provenance information. Due to time con-
straints, for the 2015 evaluation, this raw KB was
what we submitted as our final and only system re-
sult.

2.8 KB Refinement

The dotted line from Wikified Entities to the KB As-
sembler is a system component that was not ready
at evaluation time and is currently being completed.
Wikfied Entities can significantly improve the re-
sult of Name Clustering which is aimed primarily
at named entities that do not have corresponding
Wikipedia pages. Moreover, we are also currently
working on a KB Refiner to further improve the out-
put of the KB Assembler based on various constraint
checking and inference processes.

Zhttp://nlp.cs.rpi.edu/software/RPI-Software-
NameClustering-1.0.0.tar.gz

Hop ‘ Pos ‘ TP ‘ FP ‘ Inex ‘ Dup ‘ Right ‘ Wrong

Prec

Rec ‘ f1

0 1268 | 86 | 41 16 10
1 672 | 30 | 43 8 3
ALL | 1940 | 116 | 84 | 24 13

76 67 0.5315 | 0.0599 | 0.1077
27 87 0.2368 | 0.0402 | 0.0687
103 154 0.4008 | 0.0531 | 0.0938

Table 1: Evaluation Results: Micro-averaged LDC MAX Scores

3 Evaluation Results

We submitted results from one single run only which
extracted slot fillers exclusively from the TAC KBP
2015 Cold Start source documents. No other exter-
nal resources were used (however, the UIUC Wik-
ifier implicitly uses the textual portion of a 2009
Wikipedia dump). As described above, given the in-
completeness of our cross-document entity discov-
ery and linking component, our results can be only
considered an initial baseline.

Official evaluation results of our submission are
summarized in Table 1 (as per the latest February
2016 scoring revisions). The table breaks out results
by single and multi-hop queries and then in total.
“Pos” shows the total number of correct answers for
this slot type, “TP” and “FP” the total number of
raw true and false positives reported by KRes, and
“Inex” and “Dup” the number of inexact and dupli-
cate values reported. “Right” and “Wrong” further
refine all answers into one or the other category (e.g.,
duplicates and inexact matches are counted as incor-
rect), and the remainder of the columns report pre-
cision, recall, and f1 based on the refined answer
counts.

The results have high precision, particularly for
single-hop queries, but low recall. The single hop
query results are most comparable to our previous
slot filling results and show that we are at less than
half of last year’s performance of f1=0.22 (which
would now be higher given our 13% improvements
measured on the 2012 test set). While this year’s
source corpus was more difficult with about 80%
of all documents coming from multi-post discussion
fora and only 20% from newswire, a significant por-
tion of the performance loss is due to our incom-
plete entity discovery and linking component. Pre-
liminary results on 2014 Cold Start data show that
improved entity linking based on Wikification alone
improves the combined f1 by about 30%.

Another reason for the lower performance com-

pared to previous slot filling results is that our lim-
ited coverage of only 22 out of 41 slot types (not
counting inverses added by the Cold Start task) has a
more significant impact. Only 59% of Hop-0 queries
are addressed by our current set of extracted slots,
and only 22% of Hop-0+1 queries. Given the im-
portance of slot chaining in the full Cold Start KB
construction task, the biggest potential for improve-
ment might come from extending the coverage of
slot types extracted by the Knowledge Resolver, as
opposed to improving the quality of individual ex-
tractors.

Acknowledgments

This report is based on research sponsored by
the Defense Advanced Research Projects Agency
(DARPA), the Air Force Research Laboratory
(AFRL) under agreement number FA8750-12-2-
0342. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental
purposes notwithstanding any copyright notation
thereon. The views and conclusions contained
herein are those of the author and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or im-
plied, of DARPA, AFRL or the U.S. Government.

References

H. Chalupsky. 2012. Story-level inference and gap filling
to improve machine reading. In Proceedings of the
Twenty-Fifth International FLAIRS Conference. AAAI
Press.

H. Chalupsky. 2013. English slot filling with the Knowl-
edge Resolver system. In Proceedings of the 2013 Text
Analysis Conference (TAC 2013). NIST.

H. Chalupsky. 2014. English slot filling with the Knowl-
edge Resolver system. In Proceedings of the 2014 Text
Analysis Conference (TAC 2014). NIST.

X. Cheng and D. Roth. 2013. Relational inference for
Wikification. In EMNLP-2013.

D. Das, D. Chen, A.E.T. Martins, N. Schneider, and N.A.
Smith. 2014. Frame-semantic parsing. Computa-
tional Linguistics, 40(1):9-56, March.

C.J. Fillmore, C.R. Johnson, and M.R.L. Petruck. 2003.
Background to FrameNet. [International Journal of
Lexicography, 16(3):235-250.

L. Ratinov, D. Roth, D. Downey, and M. Anderson.
2011. Local and global algorithms for disambiguation
to Wikipedia. In ACL-2011.

