NYU at Cold Start 2015:
Experiments on KBC with NLP Novices

Yifan He Ralph Grishman
Computer Science Department
New York University
The KBP Cold Start Task and Common Approaches

• The KBP Cold Start task builds a knowledge base from scratch using a given document collection and a predefined schema for the entities and relations.

• Common approaches

 • Hand-written rules (Grishman and Min, 2010)

 • Supervised relation classifiers

 • Weakly supervised classifiers: distant supervision (Mintz et al., 2009; Surdeanu et al., 2012), active learning / crowd sourcing (Angeli et al., 2014)
Focus this year: NLP Novices

- Current approaches often require NLP expertise
 - NYU rules are tuned every summer for 7 years
 - Supervised systems: annotation and algorithm design
 - Crowdsourcing: secret documents?

- Can a domain expert construct an in-house knowledge base from scratch, by herself, (using tools)?
NYU Cold Start Pipeline

Text Processing
- NP chunking
- Entity tagging
- Coreference

Core Tagger
- NP internal relations (titles, relatives)

Pattern Tagger
- Lexical and dependency paths

Distantly Supervised ME Tagger
- Align Freebase to TAC 2010 document collection

Single Document
- tool for domain experts to construct new entity type
- tool for domain expert to acquire relation extraction rules

Cross Document Coref
- Based on string matching
Entity Type and Relation Construction with ICE

- ICE [Integrated Customization Environment for Information Extraction]
 - easy tool for non-NLP experts to rapidly build customized IE systems for a new domain
- Entity set construction
- Relation extraction
Constructing Entity Sets

- New entity class (e.g. **DISEASE** in *per:cause_of_death*) by dictionary
 - users are not likely to do a good job assembling such a list
 - users are much better at reviewing a system-generated list
- Entity set expansion: start from 2 seeds, offer more to review
Ranking Entities

• Entities are represented with context vectors

• Contexts are dependency paths from and to the entity

• V_{heroin}: \{dobj_sell:5, nn_plant:3, dobj_seize:4, …\}

• $V_{\text{heart_attack}}$: \{prep_from_suffer:4, prep_of_die:3, …\}

• Entities ranked by distance to the cluster centroid (Min and Grishman, 2011)
Constructing Relations: Challenges

- Handle new entity types in relation (solved by entity set expansion: ICE recognizes **DISEASE** after it is built)

- Capture variations in linguistic constructions

 - **ORGANIZATION** *leader** **PERSON** vs. **ORGANIZATION** *revived under** **PERSON** (’s leadership)

- User comprehensible rules
Rules: Dependency Path

- Lexicalized dependency paths (LDPs) extractors
 - Simple, transparent approach; no feature engineering
 - Straightforward for bootstrapping
 - Most important component in NYU's slot-filling / cold start submissions (Sun et al. 2011; Min et al. 2012)

LDP
ORGANIZATION — dobj-1:revived:prep_under — PERSON

Can user understand this?
Comprehendible Rules:
Linearized LDPs

- Linearize LDP into English phrases
- User reviews linearized English phrases
- Based on word order in original sentence
- Insert syntactic elements for fluency: indirect objects, possessives etc.
- Lemmatize words except passive verbs
Bootstrapping: Finding Varieties in Rules

• Dependency path acquisition with the classical (active) Snowball bootstrapping (Agichtein and Gravano, 2000)

• Algorithm skeleton

1. User provide seeds
2. Collect arguments from seeds
3. New paths for review
4. Iterate
Experiments

• Entity set expansion and relation bootstrapping on Gigaword AP newswire 2008 data
 • Construct DISEASE entity type
 • Bootstrap all relations, only using seeds from slot descriptions

• **CoreTagger**: only use the core tagger which tags NP internal relations

• **Setting 1**: 5 iterations of bootstrapping, review 20 instances per iteration - 553 dependency path rules

• **Setting 2**: 5 iterations of bootstrapping, review as many phrases as possible, bootstrap with coreference (Gabbard et al., 2011) - 1,559 dependency path rules

• **“Proteus”**: NYU submission that uses 1,402 dependency patterns, 2,495 lexical patterns, and an add-on distantly supervised relation classifier
Experiments

• Entity set expansion and relation bootstrapping on Gigaword AP newswire 2008 data
 • Construct DISEASE entity type
 • Bootstrap all relations, only using seeds from slot descriptions
• **CoreTagger**: only use the core tagger which tags NP internal relations
• **Setting 1**: 5 iterations of bootstrapping, review 20 instances per iteration dependency path rules
• **Setting 2**: 5 iterations of bootstrapping, review as much as possible, bootstrap with coreference (*Gabbard et al.*, 2011) - 1,559 dependency path rules
• **“Proteus”**: NYU submission that uses 1,402 dependency patterns, 2,495 lexical patterns, and an add-on distantly supervised relation classifier

~20 min per relation
~1 hr per relation
7 summers
Results: Hop0

<table>
<thead>
<tr>
<th>Model</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoreTagger</td>
<td>0.71</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>CoreTagger + Setting1</td>
<td>0.44</td>
<td>0.08</td>
<td>0.13</td>
</tr>
<tr>
<td>CoreTagger + Setting2</td>
<td>0.54</td>
<td>0.13</td>
<td>0.21</td>
</tr>
<tr>
<td>CoreTagger + Proteus</td>
<td>0.46</td>
<td>0.25</td>
<td>0.32</td>
</tr>
</tbody>
</table>

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision
Results: Hop0+Hop1

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoreTagger</td>
<td>0.47</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>CoreTagger + Setting1</td>
<td>0.34</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>CoreTagger + Setting2</td>
<td>0.37</td>
<td>0.08</td>
<td>0.13</td>
</tr>
<tr>
<td>CoreTagger + Proteus</td>
<td>0.31</td>
<td>0.20</td>
<td>0.24</td>
</tr>
</tbody>
</table>

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision
Summary

• Pilot experiments on bootstrapping a KB constructor from scratch using an open-source tool

• Builds high-precision/modest recall KBs

• Friendly to domain experts who are not familiar with NLP: user only reviews plain English examples

• Builds rule-based interpretable models for both entity and relation recognition
More To Be Done

• Better annotation instance selection
 • So that the casual user can perform similarly to a serious user

• More expressive rules beyond dependency paths
 • Event extraction

• Leverage existing KB
Thank you

http://nlp.cs.nyu.edu/ice
http://github.com/rgrishman/ice
1. Preprocessing
2. Key phrase extraction
3. Entity set construction
4. Dependency paths extraction
5. Relation pattern bootstrapping
<table>
<thead>
<tr>
<th>Subject</th>
<th>Predicate</th>
<th>Object/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>/m/0gg9kfr 2011 Christchurch earthquake</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0j_2yw_ St Luke’s Church, Christchurch</td>
</tr>
<tr>
<td>/m/0gg9kfr 2011 Christchurch earthquake</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0gg7hn1 Hotel Grand Chancellor, Christchurch</td>
</tr>
<tr>
<td>/m/0gg9kfr 2011 Christchurch earthquake</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0by116z Christchurch Hospital</td>
</tr>
<tr>
<td>/m/0qtwtw9 Chelyabinsk Event</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0r944hl Ice Palace "Ural Lightning"</td>
</tr>
<tr>
<td>/m/0qtwtw9 Chelyabinsk Event</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0qzqcvy Chelyabinsk Zinc Factory</td>
</tr>
<tr>
<td>/m/0qtwtw9 Chelyabinsk Event</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0tx4gt Chelyabinsk Drama Theatre</td>
</tr>
<tr>
<td>/m/0j0z2w4 Port Said Stadium disaster</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/064pnfg Traktor Ice Arena</td>
</tr>
<tr>
<td>/m/0gh6mkc 2011 Tōhoku earthquake and tsunami</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0b7219 Port Said Stadium</td>
</tr>
<tr>
<td>/m/0gh6mkc 2011 Tōhoku earthquake and tsunami</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/02vk_7d Fukushima Daini Nuclear Power Plant</td>
</tr>
<tr>
<td>/m/0b4mlj Katowice Trade Hall roof collapse</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/02vkzy2 Fukushima Daiichi Nuclear Power Plant</td>
</tr>
<tr>
<td>/m/01v8cd Summerland disaster</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/02r05rb Katowice International Fair</td>
</tr>
<tr>
<td>/m/0dc3pc Royal Suspension Chain Pier</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/05bgr4 Summerland Leisure Centre</td>
</tr>
<tr>
<td>/m/05252dm Tay Bridge disaster</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0dc3pc Royal Suspension Chain Pier</td>
</tr>
<tr>
<td>/m/098sht Buncefield fire</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/04zjqhp The Tay Bridge</td>
</tr>
<tr>
<td>/m/0d0vp3 September 11 attacks</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/098sp5 Buncefield oil depot</td>
</tr>
<tr>
<td>/m/0807k3 1983 United States Senate bombing</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/09w3b The Pentagon</td>
</tr>
<tr>
<td>/m/01y23_ 16th Street Baptist Church bombing</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/07vth United States Capitol</td>
</tr>
<tr>
<td>/m/0244k9 MGM Grand fire</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0bf9_v 16th Street Baptist Church</td>
</tr>
<tr>
<td>/m/053zwd 1996 Garley Building fire</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/033vpy MGM Grand Las Vegas</td>
</tr>
<tr>
<td>/m/07hxss 1992 Windsor Castle fire</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/05bgkm Garley Building</td>
</tr>
<tr>
<td>/m/0b_94y Whiskey Au Go Go fire</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0chgsms Windsor Castle</td>
</tr>
<tr>
<td>/m/02vnpxc Uphaar Cinema fire</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/05bgmws Whiskey Au Go Go</td>
</tr>
<tr>
<td>/m/0b27k1 Dee Bridge disaster</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/05bgrjk Uphaar Cinema</td>
</tr>
<tr>
<td>/m/0cfgmk Old Dee Bridge disaster</td>
<td>/event/disaster/structures_damaged</td>
<td>/m/0cfgmk Old Dee Bridge</td>
</tr>
</tbody>
</table>
Entity Set Expansion/ Ranking

• In each iteration, present the user with ranked entity list, ordered by the distance to the “positive centroid” (Min and Grishman, 2011):

\[c = \frac{\sum_{p \in P} p}{|P|} - \frac{\sum_{n \in N} n}{|N|} \]

• where \(c \) is the positive centroid, \(P \) is the set of positive seeds (initial seeds and entities accepted by user), and \(N \) is the set of negative seeds (entities rejected by user)

• Update centroid for \(k \) iterations
Entity Representation

• Represent each phrase with a context vector, where contexts are dependency paths from and to the phrase

 • DRUGS share $dobj$(sell, X) and $dobj$(seize, X) contexts

 • DISEASE share prep_of(die, X) and prep_from(suffer) contexts

• Examples: count vectors of dependency contexts

 • V_{heroin}: \{dobj_sell:5, nn_plant:3, dobj_seize:4, \ldots\}

 • $V_{\text{heart_attack}}$: \{prep_from_suffer:4, prep_of_die:3, \ldots\}

• Features weighted by PMI; word embedding on large data sets for dimension reduction
Entity Representation II

• Using raw vectors cannot provide live response

• Dimension reduction via word embeddings

• Skip-gram model with negative sampling, using dependency context (Levy and Goldberg, 2014a)

• Equivalent of factorization of the original* feature matrix (Levy and Goldberg, 2014b)

* shifted; PPMI instead of PMI0
Experiment of Entity Set Expansion

• Finding Drugs in Drug Enforcement Agency news releases

• 10 iterations, review 20 entity candidates per iteration

• Measure recall on a pre-compiled list of 181 drug names from 2,132 key phrases

• DISEASES: ICE 129 diseases; Manual 19 diseases
Constructing Drugs Type

Recall of DRUGS

- DRUGS using PMI matrix
- DRUGS using embeddings
Constructing **Drugs** Type (Weighted Result)

- Recall score weighted by frequency of entities

Recall of DRUGS (Weighted)

- Iteration 1
- Iteration 2
- Iteration 3
- Iteration 4
- Iteration 5
- Iteration 6
- Iteration 7
- Iteration 8
- Iteration 9
- Iteration 10

- Orange line: DRUGS using PMI matrix
- Blue line: DRUGS using embeddings

- Recall score weighted by frequency of entities
• 84 positive examples from 2,132 candidates
Results: Hop0 - w/ FM

<table>
<thead>
<tr>
<th>Model</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoreTagger</td>
<td>0.71</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>CoreTagger + Setting1</td>
<td>0.44</td>
<td>0.08</td>
<td>0.13</td>
</tr>
<tr>
<td>CoreTagger + Setting2</td>
<td>0.41</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>CoreTagger + Proteus</td>
<td>0.46</td>
<td>0.25</td>
<td>0.32</td>
</tr>
</tbody>
</table>

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision
Results: Overall - w/ FM

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoreTagger</td>
<td>0.47</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>CoreTagger + Setting1</td>
<td>0.34</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>CoreTagger + Setting2</td>
<td>0.31</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>CoreTagger + Proteus</td>
<td>0.31</td>
<td>0.20</td>
<td>0.24</td>
</tr>
</tbody>
</table>

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision
Fuzzy dependency path match for small rule set

• Improve recall for small rule sets
 • Also tested in our 2015 KBP Cold Start submission
• Match two LDPs with edit distance on dependency chains
 • Weight of edit operations set by grid search on dev set (substitution: 0.8, insertion: 1.2, deletion: 0.3; feature-based see paper)
 • Substitution cost determined by word similarity based on word embeddings
Fuzzy dependency path match-based extraction: example

<table>
<thead>
<tr>
<th></th>
<th>dsubj:END$</th>
<th>0.3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsubj-1:distribute</td>
<td>0.28*0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edit costs
substitution: 0.8
insert: 1.2
delete: 0.3

\[
\text{cost} = \frac{\text{weightedDistance} \cdot |\text{rule}|}{3} = \frac{0.28 \times 0.8 + 0.3}{3} = 0.17
\]
Official Run Results

<table>
<thead>
<tr>
<th></th>
<th>NestedNames+Pattern+DS+FM</th>
<th></th>
<th>Pattern+DS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Hop0</td>
<td>0.44</td>
<td>0.20</td>
<td>0.27</td>
<td>0.51</td>
</tr>
<tr>
<td>Hop1</td>
<td>0.06</td>
<td>0.09</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>MicroAvg</td>
<td>0.17</td>
<td>0.15</td>
<td>0.16</td>
<td>0.30</td>
</tr>
<tr>
<td>MacroAvg</td>
<td></td>
<td></td>
<td>0.18</td>
<td></td>
</tr>
</tbody>
</table>

Main goal: testing the fuzzy match paradigm
False positives on NIL slots from Fuzzy Match in Hop 0 was penalized heavily in Hop 1