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Abstract
In this paper, we present an overview of
the CMUML’s Micro-Reader system for three
TAC KBP tasks: Cold Start Slot Filling
(SF); Event Nugget Detection and Corefer-
ence (EN); and Event Argument Extraction
and Linking (EAL). The Micro-Reader system
is a result of the CMU NELL team’s research
efforts on single-document understanding us-
ing background knowledge. It is a general-
purpose machine reading system that takes
as input a text document and outputs span-
level semantic annotations for document un-
derstanding. There are several reading com-
ponents in the Micro-Reader, each having a
different reading capability. For the SF task,
we aggregate the outputs of different read-
ing components to propose KB assertions that
can be used to answer the SF queries. For
the EN and EAL tasks, we mainly utilize
the event reading component of the Micro-
Reader, which performs joint inference of en-
tities and events within a document context.

1 Introduction

In this paper, we describe the CMUML’s Micro-
Reader system for three TAC KBP 2016 tasks: Cold
Start Slot Filling (SF); Event Nugget Detection and
Coreference (EN); and Event Argument Extraction
and Linking (EAL). Our Micro-Reader system con-
tains several reading components, each performing
span-level or sentence-level semantic analysis of the
document. The goal is to achieve a deeper under-
standing of what each sentence means in the context
of a document. The Micro-Reader system we de-
veloped this year has a similar architecture to the
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Figure 1: Overview of the NELL Micro-Reader system
for the TAC KBP 2016 tasks.

one that was used in our 2015 submission, with the
difference that it includes several newly-developed
reading components: a LSTM-based relation extrac-
tor, a joint entity and event extractor, and a high-
coverage verb relation analyzer. Figure 1 shows
the system architecture of our Micro-reader system
for TAC KBP 2016. The newly-developed micro-
readers are highlighted in red. In the following, we
first briefly describe the micro-reader components.
Then, we discuss the experiment setup and process-
ing pipeline for each KBP task.

2 NELL Micro-Readers

Before running our own micro-readers, we process
each KBP document using the StanfordCoreNLP
pipeline.1 The tokenize, ssplit, pos, lemma, ner,

1http://nlp.stanford.edu/software/
corenlp.shtml.



parse, depparse, dcoref, and SUTime modules were
used.

Noun phrase categorizer: This reader predicts
fine-grained semantic types for noun phrases. Used
for type checking by other micro-readers that pre-
dict relations. This micro-reader categorizes noun
phrases in context, it uses the context of a noun
phrase to determine its type. The context is treated
as features for a logistic regression classifier.

Nominal noun analyzer: This reader extracts
relationships from nominal nouns such as “British
journalist John Murray” from which the nationality
and job title of John Murray are extracted. This
micro reader uses background knowledge about
type sequences to learn which compound noun
sequences express which relations.

Verb-relation analyzer: This reader identifies
verb-based relations with typed arguments. For ex-
ample, in the sentence “Hemingway was born in the
U.S..”, the verb ”born” expresses a “bornin(person,
location)” relation, where the first argument is a
person and the second argument is a location.

RegExp-based relation extractor This reader
extracts specific relations based on specified regular
expressions.

Semantic parser: We had two semantic parsers
for predicting relations. One is a generative
semantic parser that jointly infers the syntactic,
morphological, and semantic representations of a
given sentence under the guidance of background
knowledge (Saparov and Mitchell, 2016). The other
is our 2014 joint syntax and semantic CCG parser
(Krishnamurthy and Mitchell, 2012; Krishnamurthy
and Mitchell, 2014) which was trained to extract
NELL(Carlson et al., 2010; Mitchell et al., 2015)
relations from text using distant supervision.

Relation extractor: This reader extracts en-
tity mentions and their relations based on LSTM
Networks. A LSTM-CRF encoder is first trained
to identify entity mention candidates. Then a
dependency-path LSTM encoder is trained to pre-
dict the relations between pairs of entity mentions.

Event extractor: This reader jointly extracts en-
tity mentions, event trigger mentions, and event role
fillers using background knowledge as constraints

and features. This is based on our previously pub-
lished work (Yang and Mitchell, 2016).

3 Cold Start Slot Filling

3.1 Document Retrieval and Entity Matching

The KBP source documents were indexed using
Lucene2. Now, given a query, this index was used to
retrieve relevant documents. In order to identify rel-
evant sentences in the document, we perform match-
ing between the arguments in the query and the re-
trieved document.

The Entity Matcher aims to correctly map surface
strings in documents to query entities, even when
the strings are syntactically different from the text in
the entity name. We therefore, leveraged the Free-
base Annotations of the ClueWeb Corpora (FACC)3

dataset recently released by Google. This corpus
enabled us to generate synonym sets containing all
surface strings that can refer to the same Freebase
entity. During entity matching, we perform lookups
against an indexed version of this synonym sets data.
This significantly improved entity matching recall.

3.2 SF Training Data

We used the queries, answers, and assessments from
past KBP years to retrieve training examples for
KBP relations. Additionally, in 2014 we carried
out a few rounds of internal manual evaluations of
our system output on queries from 2013 and ear-
lier years. We manually labeled each slot value pro-
duced by our system as true or false. All values that
were labeled as true, that were not in the NIST train-
ing data, were used as additional training data for
our 2016 system.

3.3 LSTM-based Relation Extractor

In the following, we will describe in detail our
LSTM-based relation extractor for SF. It is the only
micro-reader that was trained using the SF training
data.

Given a sentence, we applied a sequence label-
ing model based on the combinations of LSTM
neural networks and Conditional Random Fiels
(CRFs) (Lample et al., 2016) to extract entity men-
tion candidates and use them as input to the rela-

2Lucene: http://lucene.apache.org/
3http://lemurproject.org/clueweb09/FACC1/



tion extractor. Specifically, we trained the LSTM-
CRF model using the CoNLL 2012 training data,
which includes 1,940 documents and annotations for
18 types of named entities. Most of these entity
types directly correspond to the slot filler types. The
trained LSTM-CRF was applied to the KBP source
documents to extract entity mentions. In order to
reduce the recall errors in relation extraction, we
over-generated entity mention candidates by using
the top-K4 best viterbi paths in CRFs instead of only
the best one. The extracted entity mention candi-
dates were then used to generate entity pairs for re-
lation classification.

The relation classifier was a LSTM network that
encodes dependency paths between entity mentions
as features. And it works as follows: each word w
in a dependency path between a pair of entities is
mapped to a d-dimensional vector vw ∈ Rd through
an embedding matrix E ∈ R|V |×d, where |V | is
the vocabulary size, and each row corresponds to
a vector of a word. We initialize the word embed-
dings with the 300-dimensional Google News pre-
trained embeddings. For the dependency relations
in the path, we randomly initialize their vector em-
beddings, and learn them during training.

To encode the shortest path between a pair of
entities we use an LSTM recurrent neural network
(RNN) which is capable of learning long range de-
pendencies. While regular RNNs can also learn long
dependencies, they tend be biased towards recent in-
puts in the sequence. LSTMs tackle this limitation
with a memory cell and an adaptive gating mecha-
nism that controls how much of the input to give to
the memory cell, and how much of the previous state
to forget.

We have a path: p = p1, ..., pp ∈ Rd and an as-
sociated path matrix P ∈ Rp×d, where each row
corresponds to the embedding vector of the word in
that position.
The LSTM path encoder generates the path encod-
ing, vp, as follows:

hi = LSTM(vpi , hi−1, ci−1), i = 1, . . . , p(1)

vp = hi : i = p

The LSTM encodes the word at timestep i = t in
the path using the word embedding vector vpt , the

4we set K=5 in our experiments

previous output ht−1, and the previous state of the
LSTM cell ct−1. The output ht is computed using
the four main elements in the LSTM cell: an input
gate it, a forget gate ft, an output gate ot, a mem-
ory cell ct with a self-recurrent connection. The cell
takes as input a d-dimensional input vector for men-
tion word xt = pi, the previous hidden state ht−1,
and the memory cell ct−1. It calculates the new vec-
tors using the following equations:

it = σ (Wxixt + Uhiht−1 + bi) , (2)

ft = σ (Wxfxt + Uhfht−1 + bf ) ,

ot = σ (Wxoxt + Uhoht−1 + bo) ,

ut = tanh (Wxuxt + Uhuht−1 + bu) ,

ct = it�ut + ft�ct−1,
ht = ot� tanh(ct),

where σ is the sigmoid function, � is element-wise
multiplication, the W and U parameters are weight
matrices, and the b parameters are bias vectors.

From path encoding vp, we compute the output
of the neural network, a distribution over the rela-
tionships that can hold between a pair of entities.
The output for each path is decoded by a linear layer
and a softmax layer into probabilities over the labels.
Therefore, the prediction dr

dr = (Wr · vp) (3)

where (zi) = ezi/
∑

j e
zj .

We found that performing entity mention extrac-
tion and relation classification in a pipeline could re-
sult in invalid relations that have incompatible argu-
ment types. To solve this problem, we formulated
an ILP-based objective that combines the LSTM-
CRF entity mention extractor and the LSTM rela-
tion classifier to jointly predicts entities and relations
with respect to type-consistency constraints, e.g., the
“per:top member employee of” is required to have
a PERSON entity as the first argument and a ORG
entity as the second argument.

3.4 Aggregation of different Micro-readers
At prediction time, we combine the outputs of the
micro-readers 5. Each micro-reader yielded a set
of sentences potentially expressing a variety of slot

5Some of our submissions also included the outputs of our
previous years’ CRF-based extractor.



Run Id Measure Precision Recall F1
CMUML1 CSSF 0.18 0.01 0.02
CMUML1 CSLDC 0.18 0.01 0.02
CMUML2 CSSF 0.12 0.01 0.02
CMUML2 CSLDC 0.13 0.02 0.03
CMUML4 CSSF 0.33 0.01 0.02
CMUML4 CSLDC 0.34 0.01 0.02

Table 1: Official evaluation scores (ALL-Micro) of various CMUML submissions for the SF task.

fillers, typically with significant redundancy. Re-
dundant predictions were eliminated by way of
identifying sentences expressing the same (relation,
filler) pair, or where two filler values were deemed to
be synonymous. Each filler is then assigned a con-
fidence score based on the number of times it was
found to be be expressed in the corpus.

3.5 Provenance Finder
It was necessary to locate the spans of text ex-
pressing filler values in the original source docu-
ments so that character offsets could be provided for
provenance information. We again used the Apache
Lucene index over source documents along with a
series of heuristic string similarity metrics to iden-
tify the span of characters in the original documents
that sufficiently matched the post-processed version
of the text seen by the micro-readers. While not per-
fect, we did not find during system development that
this approach ever failed to locate the correct span of
text.

3.6 Submissions
We have submitted five entries (CMUML1-5) for the
KBP cold start slot filling evaluation.

• CMUML1: Our main run using all of our 2016
micro readers except for the CRF-based extrac-
tor used in our previous years’ submissions.

• CMUML2: This is the same as CMUML1, but
with an unfiltered version of our LSTM-based
relation extractor (without the ILP-based objec-
tive).

• CMUML3: This only uses the outputs of the
LSTM-based relation extractor.

• CMUML4: This uses all the micro-readers ex-
cept for the LSTM-based relation extractor.

• CMUML5: This combines CMUML1 with the
CRF-based relation extractor used in our previ-
ous years’ submissions.

Experimental results of these systems are shown
in Table 1. We skip the results of CMUML3 since
the micro-F1 scores are lower than 0.01. The scores
of CMUML5 are similar to the scores of CMUML1.

4 Event Nuggets, Event Arguments, and
Event Coreference

4.1 Event Training Data
We used the ACE2005 corpus and the “Event
Argument Linking Pilot Gold Standard” corpus
(LDC2016E60) as our training data. ACE2005 con-
tains annotations of entities, values, relations, and
events for 599 documents collected from newswire
sources, discussion forums, web blogs, and broad-
cast conversations. LDC2016E60 contains annota-
tions of entities, relations, and events (RichERE) for
91 documents collected from newswire sources and
discussion forums. We manually mapped the ACE
ontology to the RichERE ontology as both the EN
and EAL tasks adopt the RichERE ontology. We
also used the LDC released RichERE Training An-
notation (LDC2016E31) as our development data,
which contains 69 discussion forum threads from the
TAC KBP 2015 Tri-Lingual EDL training data.

4.2 Joint Event and Entity Extraction
We applied our previous work – a joint event and
entity extractor (Yang and Mitchell, 2016) to the
EAL task and the EN task. It has the advan-
tage of performing joint inference over the depen-
dencies among entities, event nuggets, and event
arguments, and therefore, is able to make more
globally-informed decisions than standard pipeline
approaches.



She is	being	held1 on	50,000	dollars bail	on	a	charge2 of	first-degree	

reckless	homicide3 and	hiding	a	corpse in	the	death4 of	the	infant

born5 in	January.

2.CHARGEINDICT
DEFENDENT:	“She”
CRIME:	“homicide”

3.DIE
AGENT:	“She”
VICTIM:	“infant”

4.DIE
VICTIM:	“infant”

5.BEBORN
PERSON:	“infant”
TIME:	“January"	

1.Arrest-Jail
PERSON:	“She”

PER MONEY

PERPER

TIME

Figure 2: Example of the annotations output by the joint
event and entity extractor.

Our joint event and entity extractor models three
types of dependencies: (1) the dependencies be-
tween a single event and all of its arguments, (2)
the co-occurrence relations between events across
the document, and (3) dependencies between entity
mentions. All of these dependencies are learned us-
ing graphical models. During inference, entities,
event nuggets, and event arguments are simultane-
ously extracted while accounting for their dependen-
cies as well as consistency constraints (e.g., a DES-
TINATION argument cannot be filled by a PER-
SON entity).

Figure 2 shows an example of the annotations out-
put by our joint event and entity extractor. Given a
text, it identifies all the entity mentions (the under-
lying spans) with appropriate types and all the event
nuggets (the colored words) with appropriate event
frames. Each event frame has an event type and a list
of event arguments that are filled by a subset of the
entity mentions. For example, the first event frame
stores a ARREST-JAIL event and it has a PERSON
argument that can be filled by the entity mention
“She”.

4.3 Features

Our joint event and entity extractor employs rich fea-
tures constructed based on lexical and semantic re-
sources as well as context. In the following we list
two sets of features: one for the event-trigger factors
and the other for the argument-role factors6.

For event triggers/nuggets:
1. lemmas of the words in the trigger mention.
2. nominalization of the words based on Nom-
lex (Macleod et al., 1998).
3. context words within a window of size 2.

6Please refer to Table 1 in Yang and Mitchell (2016) for a
description of the whole set of features.

4. similarity features between the head word and a
list of trigger seeds based on WordNet (Bronstein et
al., 2015).
5. semantic frames that associate with the head
word and its p-o-s tag based on FrameNet (Li et al.,
2014).
6. pre-trained vector for the head word (Mikolov et
al., 2013).
7. dependency edges involving the head word, both
lexicalized and unlexicalized.
8. whether the head word is a pronoun.

For event arguments:
1. lemmas of the words in the entity mention.
2. lemmas of the words in the trigger mention.
3. words between the entity mention and the trigger
mention.
4. the relative position of the entity mention to the
trigger mention (before, after, or contain).
5. whether the entity mention and the trigger
mention are in the same clause.
6. the shortest dependency paths between the entity
mention and the trigger mention.

4.4 Realis Prediction

We developed a Maximum-Entropy classifier to pre-
dict the Realis values for the event nuggets (AC-
TUAL, GENERIC or OTHER). We used the same
set of event trigger features listed above except for
the WordNet-based similarity features (No. 4).

Similarly, we developed a Maximum-Entropy
classifier to predict the Realis values for the event ar-
guments (ACTUAL, GENERIC or OTHER), us-
ing the same set of event argument features listed
above.

4.5 Event Argument Normalization

We used the Stanford SUTime library for time nor-
malization. For pronoun entities, we used the Stan-
ford Coreference system to resolve their references,
except that we resolved the references of first-person
nouns “I”, “me”, “my”, “mine”, and “myself” to the
speaker or author of the text.

4.6 Event Coreference

We employed a standard mention-pair model com-
bined with single-link clustering for event corefer-



Argument Summary Score
System 5% 50% 95%
CMUML1 2.5 3.1 3.6
CMUML2 2.9 3.5 4.0
CMUML3 2.5 3.1 3.6

Linking Summary Score
System 5% 50% 95%
CMUML1 1.4 1.8 2.2
CMUML2 1.6 2.0 2.4
CMUML3 1.5 1.8 2.2

Table 2: Official evaluation scores of various CMUML
submissions for the EAL task.

ence. To train the mention-pair model, we gener-
ate positive and negative examples (pairs of event
nuggets) from the training data, and used the fol-
lowing features to train a logistic regression model:

1. head word string match; 2. head POS tags; 3.
event types; 4. realis types; 5. cosine similarity be-
tween the head word embeddings of the two event
nuggets (we use the pre-trained 300-dimensional
word embeddings from word2vec7); 6. similarity
between the words in the two event nuggets (based
on term frequency (TF) vectors); 7. similarity be-
tween the context words (a window of three words
before and after each event nugget); 8. similarity
between the words in the argument mentions.

4.7 EAL submissions

We have submitted three entries (CMUML1-3) for
the KBP Event Argument Extraction and Linking
Task. All of them ran the same joint event and en-
tity extractor, with minor differences on the post-
processing of realis values and corpus-level event
coreference.

• CMUML1: Our main run using the event ex-
tractor described above.

• CMUML2: This is the same as CMUML1,
but with a rule-based realis value predictor for
event arguments: we created a dictionary of
modal words in English and classified an argu-
ment to be OTHER if it links to a modal word
via the dependency parse tree.

7https://code.google.com/p/word2vec/

CMUML1
Precision Recall F1

Plain 71.44 18.11 28.89
Mention Type 61.0 15.48 24.70
Realis Status 51.76 13.12 20.93
Mention+Realis 44.16 11.19 17.86
Coref CoNLL F1: 15.21

CMUML2
Precision Recall F1

Plain 72.19 17.91 28.70
Mention Type 61.81 15.34 24.58
Realis Status 52.18 12.95 20.75
Mention+Realis 44.71 11.10 17.78
Coref CoNLL F1: 14.59

CMUML3
Precision Recall F1

Plain 71.27 18.37 29.21
Mention Type 60.44 15.58 24.77
Realis Status 51.54 13.29 21.13
Mention+Realis 43.60 11.24 17.87
Coref CoNLL F1: 15.19

Table 3: Official evaluation scores of various CMUML
submissions for the EN task.

• CMUML3: This is the same as CMUML1,
but with a rule-based cross-document event
coreference resolver: we considered two event
nuggets to be coreferent if they share the same
head word and appear in two documents that
have similar headlines.

Experimental results of these systems are shown
in Table 2.

4.8 EN submissions
We have submitted two entries (CMUML1-2) for the
KBP Event Nugget Detection and Coreference Task.
All of them ran the same joint event and entity ex-
tractor, with minor differences on the event corefer-
ence methods.

• CMUML1: Our main run using the event ex-
tractor described above.

• CMUML2: This uses a simplified version of
the event extractor where the entity extraction
component was removed and the joint infer-
ence is over event nuggets and event arguments.



• CMUML3: This is the same as CMUML1,
but augmented with a rule-based component
that aims to improve recall: in addition to
the system predicted coreferent mentions, we
identified all the other mentions that have the
same head word and the same subject or object
within the same document and considered them
to be coreferent.

Experimental results of these systems are shown
in Table 3.

5 Conclusion

In this paper, we presented an overview of the
CMUML system for the KBP 2016 English Cold
Start Slot Filling (SF); Event Argument Extraction
and Linking (EAL); and Event Detection and Coref-
erence. The system used a combination of micro-
readers that analyze different semantic aspects of
text. For future submissions, we hope to further im-
prove the performance of our existing micro-readers
and explore more effective ways of integrating dif-
ferent micro-readers.
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