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Abstract

This year, the CMU_CS_Event team partici-
pated in the Event Argument Extraction and
Linking Task. We utilize a pipeline of classi-
fiers approach to event extraction, with partic-
ular focus on leveraging resources from mul-
tiple languages in order to train a single cross-
lingual model. We apply our system to tri-
lingual event extraction, resulting in the top
performance on both the Chinese and Spanish
document-level sub-tasks.

1 Introduction

As event extraction algorithms continue to improve
in performance, a natural question to ask is how to
adapt such systems to new languages? To date, the
majority of event extraction work has focused on En-
glish (Grishman et al., 2005; Ji and Grishman, 2008;
Gupta and Ji, 2009; Liao and Grishman, 2010; Liao
and Grishman, 2011; Li et al., 2013; Bronstein et al.,
2015). Beyond this, only a small subset of research
has attempted to explore languages beyond English
— primarily in Chinese, but occasionally other lan-
guages as well (Chen and Ji, 2009b; Piskorski et al.,
2011; Li et al., 2012; Chen and Ng, 2012; Chen and
Ng, 2014).

However, even when considering event extraction
in non-English languages, the majority of research
still focuses on monolingual event extraction; that
is, training and testing on the same language. With
the major challenges and costs that exist in obtain-
ing training data for event extraction, it is desirable
to be able to transfer knowledge between languages
in order to improve performance. This has been
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widely studied within the natural language process-
ing (NLP) community on a variety of tasks (Rich-
man and Schone, 2008; Zeman and Resnik, 2008;
Snyder et al., 2009; Cohen et al., 2011; McDonald et
al., 2011; Ammar et al., 2016), but there exists only a
small amount of work extending cross-lingual NLP
to event extraction, such as those by Chen and Ji
(2009a), Piskorski et al. (2011), and more recently,
Hsi et al. (2016).

Our core algorithm is primarily based on the work
of Hsi et al. (2016), with some adaptations to modify
this work to match the TAC-KBP Event Argument
Extraction specifications. We begin by introducing
necessary terminology for the event extraction task
in Section 2. We then describe our overall system ar-
chitecture in Section 3. In Section 4, we show some
experimental tri-lingual results on RichERE data, as
well as our official results on the 2016 evaluation
set. Finally, we offer conclusions and ideas for fu-
ture work in Section 5.

2  Terminology

We begin by identifying relevant terminology for
event extraction.

e An event is something that happens in the world
at a particular place and time.

e An event mention is a particular occurrence of
an event in a document. An event may be
mentioned multiple times within the same doc-
ument, or the same event may be mentioned
across a set of documents.



e An event trigger is a particular word that signi-
fies the existence of an event.

e An event argument is an entity that fulfills some
role within a particular event. The set of valid
roles for an event depends on the type of event,
including roles such as Agent, Place, and Time.

e An event argument mention is a particular tex-
tual instance of an event argument.

3 System Architecture

Our system architecture is as follows. We begin
with a preprocessing step, which includes tokeniza-
tion, part-of-speech tagging, entity mention recog-
nition, and dependency parsing. We then use a se-
ries of classifiers to perform event trigger classifica-
tion, event argument classification, and argument re-
alis classification. The results of these classifiers are
used in a postprocessing step to match the specified
output format for the TAC-KBP task. The overall
pipeline can be seen in Figure 1.

We begin by describing each of our components
in turn, focusing on the general case of monolingual
training. We begin by first describing our model in
general, and then highlight our components enabling
cross-lingual learning.

3.1 Preprocessing

We begin by running the Stanford CoreNLP tool on
the input texts to obtain segmentation, tokenization,
and part-of-speech tags (Manning et al., 2014). For
English, we additionally run the CoreNLP depen-
dency parsing module. For Spanish and Chinese, we
obtain dependency parses using MaltParser (Nivre
et al., 2007), which we found to work much faster in
practice than CoreNLP.

For each of the three languages, we train a con-
ditional random field (Lafferty et al., 2001) with the
Stanford Named Entity Recognizer (NER) (Finkel
et al., 2005) in order to detect entity mention candi-
dates. In the official evaluation, we also utilize re-
sults from the TAC KBP Entity Discovery and Link-
ing (EDL) track.

3.2 Event Trigger Extraction

Following the preprocessing stage, we extract fea-
tures for our event trigger classifier, which may be

seen in Table 1. For each word in each document,
we classify the word as belonging to one of the event
types in the RichERE ontology, or “NONE” if the
word is not an event trigger. We train a logistic re-
gression classifier to make the predictions, using LI-
BLINEAR (Fan et al., 2008).

We obtain word embeddings with word2vec
(Mikolov et al., 2013) for all three target languages
(English, Chinese, Spanish) using their respective
Wikipedia dumps.

3.3 Event Argument Extraction

Given the resulting event triggers from the previ-
ous step, we then make classification decisions on
event arguments. For each trigger word/entity men-
tion pair within a sentence, we classify the relation-
ship between them as belonging to one of the argu-
ment roles in the RichERE ontology, or “NONE” if
no such relationship exists. We train our argument
classifier using LIBLINEAR.

We extract features for this component from the
preprocessed texts and the output triggers from the
previous step. A detailed view of our features can be
seen in Figure 2.

3.4 Realis Classification

For each argument found by the event argument de-
tection component, we then make a final classifica-
tion decision to determine the realis value of the ar-
gument — one of ACTUAL, GENERIC, or OTHER.
We once again train a logistic regression classifier
with LIBLINEAR to perform this task. For this
component, we use similar features to those of the
argument detection component.

3.5 Postprocessing

Finally, once we have obtained our set of extracted
event arguments and their corresponding realis la-
bels, we perform some final postprocessing steps
in order to match the output format defined by the
TAC-KBP Event Argument Extraction and Linking
task. Within documents, we link together all argu-
ments that belong to the same event type. We do not
perform any additional linking of arguments across
documents.
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Figure 1: Architecture for our event extraction system.
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Event Trigger Extraction Features

Lexical features (e.g. words and lemmas within a context window)
Length of the current word

Language-specific POS tags within a context window

Universal POS tags within a context window

Word embedding vector for current word

Dependent/Governor information from dependency parsing

Table 1: Features used in the Event Trigger Extraction component

Event Argument Extraction Features

Lexical features about the entity phrase

Lexical features for individual words in the entity phrase
Entity type

Event type and subtype of trigger word

Existence of any other candidate entities in the same sentence
Distance between the trigger and entity

Dependent/Governor information from dependency parsing

Table 2: Features used in the Event Argument Extraction component

3.6 Cross-lingual Training

Our overall system architecture described in the pre-
vious sections is designed in such a way as to allow
both monolingual and cross-lingual usage. In this
section, we now describe how our approach enables
cross-lingual training.

A major challenge in event extraction research is
the lack of available training data. This is especially
true in the case of Spanish, which has far fewer an-
notated documents than either English or Chinese.
To overcome this obstacle, we incorporate training
data from all three languages in order to create a sin-
gle cross-lingual model that can make predictions on
documents in any of these languages.

In order to facilitate the use of all three languages

in training, we use a combination of language de-
pendent and language independent features in train-
ing. By using such a combination of features, we
allow our model to both focus on the nuances of the
individual language being tested on as well as the
general behaviors that can be observed across lan-
guages. The language dependent features include
individual words, language-specific part-of-speech
tags, and word embeddings. The language indepen-
dent features include Universal POS tags (Petrov et
al., 2012), trigger type information, entity type in-
formation, and Universal Dependencies (McDonald
etal., 2013).



4 Experiments

We now present our experimental results. We be-
gin by describing our own internal experiments con-
ducted prior to the TAC-KBP 2016 evaluation. We
then move on to discuss our performance during the
official evaluation.

4.1 Internal Experiments

For our internal experiments, we utilize the En-
glish, Chinese, and Spanish portions of RichERE.
We conduct separate experiments on all three tar-
get languages to show the improvement in perfor-
mance that may be obtained via cross-lingual train-
ing. For these experiments, we utilize the RichERE
gold standard entity mentions and event triggers as
input to our system.

For each experiment, we first consider a monolin-
gual baseline. We split the data for the target lan-
guage into 10 folds, and conduct cross-validation.
We then consider the cross-lingual extension of this
baseline by adding all of the available training data
in the other two (non-target) languages. Results for
these experiments may be seen in Tables 3, 4, and 5
for English, Chinese, and Spanish respectively. We
report both micro-averaged and macro-averaged re-
sults.

Testing on English, we find that the cross-lingual
approach suffers from slightly worse precision, but
shows slight improvement on recall and F1. On Chi-
nese, we find that all metrics are improved under the
cross-lingual setting. Furthermore, on Chinese we
see a larger difference in performance between the
monolingual baseline and the cross-lingual version.

Spanish suffers from notably worse performance
than the other languages in its monolingual base-
line — almost 20 points lower on F1 compared to
English! This is to be expected however due to
the much smaller amount of available training data.
This also means that Spanish provides the best op-
portunity for drawing improvements from other lan-
guages. Indeed, when we apply our cross-lingual
approach to Spanish, we find that this provides a
noticeably larger boost in performance — nearly 10
points of improvement on macro and micro F1 over
its monolingual counterpart.

4.2 Official Results

For the official evaluation, we ran our system on all
three target languages, submitting 5 different runs:

e Run 1 — trained a single cross-lingual model,
used combination of entity mentions from the
CMU_CS_EDL team and entity mentions ex-
tracted by our mention detection system

e Run 2 - trained a single cross-lingual model,
used entity mentions from the CMU_CS_EDL
team

e Run 3 - trained three separate monolin-
gual models, used entity mentions from the
CMU_CS_EDL team

e Run 4 — trained a single cross-lingual model,
used entity mentions extracted by our mention
detection system

e Run 5 — trained three separate monolingual
models, used entity mentions extracted by our
mention detection system

All 5 runs were trained on the union of the ACE
2005 and RichERE data. Results for each of our five
runs on English, Chinese, and Spanish may be seen
in Tables 6, 7, and 8 respectively.

In English, our best system is from Run 1, which
uses cross-lingual training and both entity mention
sources. We see mixed results overall about whether
cross-lingual training improves over monolingual
training — it provided a small boost in performance
when using the Stanford NER entity mentions, but a
slight drop in performance when using just the EDL
mentions. We quite clearly see a boost in perfor-
mance when using the Stanford NER mentions over
the EDL mentions, with the best performance result-
ing when we take the union of these mentions.

In Chinese, our best system is also Run 1. How-
ever, in Chinese we find that using cross-lingual
training boosts F1 performance regardless of the en-
tity mention source — Run 2 outperforms Run 3, and
Run 4 outperforms Run 5. This is promising to note,
and supports our internal experiments on RichERE.

In Spanish, our best system is Run 3, which means
that cross-lingual training did not give the best per-
formance on this language. An interesting differ-
ence between our Spanish results and our other re-
sults is that Spanish is the only language where using



Macro-Average Micro-Average
Precision | Recall | F1 Precision | Recall | F1
Monolingual approach | 72.3 50.3 57.6 | 78.6 53.7 63.8
Cross-lingual approach | 71.8 52.1 58.6 | 78.3 54.5 64.2

Table 3: English Argument Results on RichERE

Macro-Average

Micro-Average

Precision | Recall | F1 Precision | Recall | F1
Monolingual approach | 59.1 39.8 45.7 | 75.5 46.4 574
Cross-lingual approach | 66.6 46.1 523 | 76.4 48.6 59.3

Table 4: Chinese Argument Results on RichERE

Macro-Average Micro-Average
Precision | Recall | F1 Precision | Recall | F1
Monolingual approach | 54.5 323 37.8 | 72.7 322 44.4
Cross-lingual approach | 58.2 424 46.0 | 73.6 40.6 52.0

Table 5: Spanish Argument Results on RichERE

just EDL mentions outperformed using the Stanford
NER mentions. This seems to imply that our Span-
ish entity detection module is insufficient to prop-
erly identify candidate arguments. In future, it may
be beneficial for us to explore alternative directions
for Spanish entity mention detection.

Across all three languages, we find that our sys-
tem’s overall performance is clearly tied to our low
recall. This is an area for clear improvement, al-
though we note that this kind of low-recall problem
is typical for event extraction systems. This year
in particular, we anticipated lower recall than in the
past due to the shift from previous years to a gold-
standard based evaluation, so the overall results are
not too surprising for us.

In general, we have found less improvement with
cross-lingual training in the official evaluation than
with our internal experiments on RichERE. One pos-
sible explanation for this is due to the selected event
categories used by the TAC KBP 2016 evaluation.
This year’s evaluation focused on a smaller set of
event types compared to previous years. In contrast,
our internal experiments focus on the entire set of
categories. This is meaningful because our cross-
lingual algorithm is particularly designed to improve
performance on rare classes by borrowing additional
training examples from other languages. When there
is already sufficient training data to do well on a

class, adding additional data via cross-lingual train-
ing offers diminishing gains. Another factor to con-
sider is that in the evaluation setting, our system suf-
fers from noisy decisions earlier in the pipeline (e.g.
entity mentions, trigger classification), particularly
in the case of Spanish. In contrast, the internal ex-
periments we described in the previous section as-
sume much less noisy input.

On the official metric for ranking argument
scores, we achieve the median rank on English, and
the top rank on both Chinese and Spanish. These
scores may be seen in Tables 9, 10, and 11, along
with the top ranked and median (where available)
scores.

5 Conclusion

This year at TAC-KBP, we submitted 5 systems to
the Event Argument and Linking Task. We focus
in particular on cross-lingual training and leverag-
ing resources from multiple source languages to im-
prove performance on the target language. Our inter-
nal results on RichERE show promising results for
all three languages when incorporating additional
languages during training, with particularly notable
improvements on Chinese and Spanish.

In the official document-level results, we achieved
the median ranked score for English, and the top



Precision | Recall | F1 | Arg Score | Link Score
CMU_CS_Eventl | 31.2 4.9 84| 3.0 1.3
CMU_CS_Event2 | 49.5 22 42|20 0.3
CMU_CS_Event3 | 50.9 2.3 43| 2.1 0.3
CMU_CS_Event4 | 28.5 3.9 6.8 | 2.3 0.9
CMU_CS_Event5 | 28.6 3.8 6.8 23 0.8

Table 6: Document-level English results in official TAC KBP 2016 Evaluation

Precision | Recall | F1 | Arg Score | Link Score
CMU_CS_Eventl | 12.2 3.6 55|35 1.5
CMU_CS_Event2 | 14.7 1.1 20|13 0.5
CMU_CS_Event3 | 12.7 1.0 1.8 | 1.2 0.3
CMU_CS_Event4 | 12.2 3.1 5032 1.3
CMU_CS_Event5 | 11.5 3.1 49133 1.0

Table 7: Document-level Chinese results in official TAC KBP 2016 Evaluation

Precision | Recall | F1 | Arg Score | Link Score
CMU_CS_Eventl | 17.0 1.1 21|13 0.6
CMU_CS_Event2 | 17.5 1.1 20| 1.2 0.5
CMU_CS_Event3 | 14.6 14 25| 1.5 0.8
CMU_CS_Event4 | 33.3 0.3 05|04 0.2
CMU_CS_Event5 | 21.1 0.3 05103 0.1

Table 8: Document-level Spanish results in official TAC KBP 2016 Evaluation

5% | 50% | 95%
Our best system 25130 |34
Top-ranked system 8.6 | 9.7 10.9
Median-ranked system | 2.5 | 3.0 | 34

Table 9: Official measurement for ranking English argu-
ment scores. Scores are given as percentiles based on
bootstrap resampling.

5% | 50% | 95%
Our best system 23|35 |44
Top-ranked system | 2.3 | 3.5 | 4.4

Table 10: Official measurement for ranking Chinese ar-
gument scores. Scores are given as percentiles based on
bootstrap resampling.

ranked scores for both Chinese and Spanish. We find
that cross-lingual training sometimes, but not always
boosts performance under this setting, which we hy-
pothesize to be due to the reduced coverage of rare
classes in the evaluation data as well as noisy input

5% | 50% | 95%
Our best system 1.1 | 1.5 1.9
Top-ranked system | 1.1 | 1.5 1.9

Table 11: Official measurement for ranking Spanish ar-
gument scores. Scores are given as percentiles based on
bootstrap resampling.

from classification decisions made earlier in the sys-
tem pipeline.

A possible direction for future work would be the
adaptation of cross-lingual training to more sophis-
ticated machine learning models, including the use
of structured prediction and neural methods. An
additional direction to explore would be to expand
our entity mention detector to a cross-lingual model.
Currently, we only consider cross-lingual training at
the trigger, argument, and realis classification stages
of the system, so applying a cross-lingual entity
mention detector could offer additional boosts in
performance.
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