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Abstract 

This paper describes the system OpenKN 

which we established in the TAC KBP 

2016. In TAC KBP 2016, we participated 

in one track: Cold Start KB Track. In order 

to complete the task, we developed a five-

step system which solves the problem of 

building knowledge base from a document 

collection of unstructured text. These five 

steps to complete this task are document-

processing, relation extraction, cross-

document co-reference resolution, 

inference, and post-processing, where the 

relation extractor is the combination of four 

methods: rule-based pattern extractor, 

bootstrapping, OpenIE and an Implicit 

Relation Information Extractor.  

1 Introduction 

The goal of TAC KBP 2016 is to develop and 

evaluate technologies for building and populating 

knowledge bases (KBs) from unstructured text. It 

contains several tracks, and we participate in Cold 

Start Track (KB variant, English) this year. 

The Cold Start KBP track builds a knowledge 

base from scratch using a given document 

collection and a predefined schema for the entities 

and relations that will compose the KB. Given a 

collection of documents, the Cold Start KB 

Construction system must find all PER, ORG, GPE, 

LOC, FAC entities in the collection, which are 

mentioned by named mentions or nominal 

mentions, and create a KB node for each entity as 

well as linking each name mention and each 

nominal mention to the correct entity node. Then, 

41 slots are required to be filled for each entity 

node in the KB according to the given document 

collection. 

For this purpose, we propose a system which 

includes five parts to finish this task: document-

processing for preparing entities, relation 

extraction (regarded as slot filling, aims to extract 

relations by four methods), cross-document co-

reference resolution to merge similar entities, 

inferring relations from already-known relations, 

and post-processing. 

The paper is organized as follows. Section 2 

describes the architecture of our system. The 

document processing module is explained in 

Section 3, including pre-processing, entity 

discovery and intra-document co-reference 

resolution. Section 4 describes the details of 

relation extractor, including the four methods and 

the combination strategy. And the cross-document 

co-reference resolution is introduced in Section 5, 

as well as inference module in Section 6 and post-

processing module in Section7. Section 8 lists the 

evaluation results of the task. Finally, we conclude 

the paper in Section 9 and present related 

references. 

2 System Architecture 

Our proposed system contains five steps, i.e., 

document-processing, relation extraction, cross-

document co-reference resolution, inference, and 

post-processing, as illustrated in Figure 1.  

More specifically, in the document-processing 

step we extract all named mentions and nominal 



mentions from the corpus and save their type and 

offset, as well as intra-document co-reference 

resolution included. Then the relations of entities 

are extracted from corpus (i.e. slot filling) in four 

ways: rule-based method, bootstrapping-based 

method, OpenIE-based method and implicit 

relation extractor. After this step, the task turns 

into co-reference resolution of the cross-document 

entities. It is implemented by linking entities to 

Wikipedia and nil clustering. What followed next 

is inference, which supplies the existing relations. 

Finally, we utilize the post-processing component 

to remove wrong results and format final results. In 

the following, we explain each step in detail. 
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Figure 1 Architecture of the system 

3 Document Processing 

    Document processing includes the pre-process 

of the corpus, entity discovery and intra-document 

co-reference resolution as following. 

3.1 Pre-processing 

The documents are pre-processed in three 

aspects: 

1) It should be noted that according to the Entity 

Linking Query Development Guidelines, when we 

detect discussion forum threads or web documents, 

the entity mentions occurring between 

<quote></quote> tags are ignored. As a result, we 

simply replace these pieces of content by 

whitespaces to avoid the errors of offsets. 

2) As the publish dates of documents are helpful 

to infer the slots concerning date (in most cases is 

death date, see details in section 2.4), we extract 

the date information of each document. For 

newswires, the date is article’s publish date; For 

forums, the date is post’s date. 

3) The length of each document is validated 

according to the given doc-length file. 

3.2 Entity Discovery 

     Since Cold Start tasks require to return nominal 

entity mentions apart from the named entity 

mentions, there are two parts in our entity 

discovery module, ie, the named entity discovery 

and the nominal entity discovery.  

3.2.1 Named Entity Discovery 

There are three steps to detect all entity 

mentions from the target document. Firstly, we use 

Stanford NER (Finkel et al., 2005) to extract 

person (PER), organization (ORG), geo-political 

entity (GEP), facility (FAC) and location (LOC). 

Secondly, we use data provided by the reference 

KB (LDC2014T16 and LDC2015E42) to 

supplement the results of NER. Thirdly, we use the 

regular expression to extract post authors as 

persons. We combine these results as the final 

entity mentions. 

In addition, as the Cold Start tasks requires two 

more types of entities, ie, facility (FAC) and 

location (LOC), we re-trained a named entity 

tagger model by Stanford NER tool based on the 

corpus from ERE (LDC2015E78, LDC2015E68, 

LDC2015E29, LDC2014E31, LDC2014E114, 

LDC2013E64) and the training and evaluation data 

of trilingual EDL 2015 (LDC2016E38). 

3.2.2 Nominal Entity Discovery 

To detect nominal entity mentions, we trained a 

model by Stanford NER tool as well, and the data 



are same as the data used to train the named entity 

recognizer in Section 3.2.1, but only extract the 

NOM mentions which have <head> information. 

In our experiments, it is found that the training data 

without <head> information will introduce noise. 

And we also trained a model to detect name and 

nominal mentions at the same time, whose 

performance is not quite good enough. We also 

detect the nominal mentions of PER entities 

following RPI system (Hong et al., 2015). 

3.2.3 Intra-document Co-reference Resolution 

There are five steps in our intra-document co-

reference resolution. Firstly, the mentions whose 

name are the same are linked together. Secondly, a 

co-reference chain is generated by Stanford 

CoreNLP (Manning et al., 2014). Thirdly, we 

combine the two chains as the final co-reference 

chain. Forthly, the entity types of mentions in one 

chain should be unified into the entity type same as 

the majority. Fifthly, the canonical mention is 

selected by following standards:  

a) the canonical mention should appear in the 

main body of the document, ie, in the content 

between <text> tags, to prevent from lack of 

contextual information.  

b) the start offset of the canonical mention 

should be as small as possible.  

4 Relation Extractor 

The relation extraction step consists of four 

modules, namely, the rule-based pattern extractor 

module, the bootstrapping-based relation extractor 

module, the OpenIE-based relation extractor 

module and Implicit Relation Information 

Extractor module. 

4.1 Rule-based Relation Extractor 

The rule-based pattern extractor module is 

based on our previous TAC system (Chen X et al., 

2015; Lin H et al., 2014) and it works as follows. It 

firstly describes the rule-based patterns in terms of 

the context free grammar with respect to the target 

slot of entities. Then these grammars are compiled 

under the cascaded finite-state transducers (CFT). 

With the aid of CFT, the slots are extracted under 

the collision detection phrase. More specifically, 

the rule-based patterns are firstly represented in the 

form of triplets (Heads, Arguments, Body). For 

example, to extract the slot per:age, we can define 

the pattern as follows: 

  

AGE(person,age):(DIST_5,"_person{NAME}", 

"_age{AGE}","year’s old"), 

 

where the parameter DIST_n is used to define the 

distance (i.e., n words) between the followed two 

arguments. In particular, when the sentences match 

two or more rules, in order to boost the extraction 

efficiency, we adopt the inversed index to store the 

mapping from arguments to their locations in the 

corresponding patterns. 

4.2 Bootstrapping-based Relation Extractor 

Apart from defining these rule-based patterns, 

we also consider the bootstrapping technique for 

the purpose of recursive extraction. This can be 

accomplished by training the data sets and tuning 

the parameters appearing in the body of the rules. 

For example, these parameters may include the 

distances between arguments, the order of 

arguments, the distances between arguments by 

analyzing the results of dependency parsing. In this 

system, the bootstrapping-based relation extractor 

is built based on ICE [the Integrated Customization 

Environment] (He et al., 2015), which is an 

information extraction customization tool.  

We use ICE to bootstrap slot filling rules on the 

cold start 2015 source corpus (LDC2016E39) and 

cold start 2016 source corpus. The ICE 

bootstrapper firstly conduct NLP pre-processing on 

the corpus, including named entity recognition, 

dependency parsing, POS tagging, etc., so that all 

dependency patterns are generated at once. Then, 

for each slot, we provide ICE with two or three 

seed dependency patterns derived from all 

dependency paths, and the bootstrapper searches 

the most similar dependency patterns and returns 

them to the user for review, where the positive and 

negative patterns tagged by the user are then sent 

back to the ICE bootstrapper for the next iteration 

of bootstrapping patterns. Finally, the bootstrapper 

generated rules for 22 slots, and the rules extracted 

about twelve thousand fillers in total. 

4.3 OpenIE-based Relation Extractor 

OpenIE [Open Information Extraction] is 

another method we used to extract relations. We 

use OpenIE v4.0 (Mausam et al., 2012) on the cold 



start 2016 source corpus, and it produces tuples of 

the form (arg1, rel, arg2) for the given sentence, 

where rel is the phrase related to arg1 and arg2 in 

the sentence, which may or may not align to the 41 

slots of TAC. As a result, the main challenge is to 

align the rel to TAC slots as well as mapping the 

arg1 and arg2 to entities. 

To this end, a more automated approach using 

embedding techniques is adopted, apart from the 

rule-based aligning approach following (Soderland 

et al., 2013, Jia et al. 2016). In order to better 

calculate the similarity of rels and TAC slots, the 

automated approach makes use of the low-

dimensional embeddings of words in rels and the 

embeddings of TAC slots (Weston J et al., 2013), 

which are learned according to the constrains of 

the form: 

𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠) > 1 + max
𝑠′∈{𝑆−𝑠}

𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠′), 

where 𝑟  denotes the rel and 𝑠  denotes the true 

target TAC slot that the rel should be align to. 𝑆 

denotes the set of all 41 TAC slots, and the {𝑆 − 𝑠} 

denotes the set of other 40 TAC slots excluding 𝑠. 

The score function is defined to score the similarity 

of a rel 𝑟 and a TAC slot 𝑠,  

𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠) = 𝒇(𝑟)𝑇𝒔 

where the bold face denotes the embedding vector 

in the low-dimensional space ℝ𝑑 , where 𝑑  is the 

dimension of the embedding vector space. Here 𝑓 

is a function mapping words into ℝ𝑑 , 𝒇(𝑟) =
 𝑊𝑇∅(𝑟) , where 𝑾  is the matrix of ℝ|𝑉| , 

containing all word embeddings 𝒘 and 𝑉 is the set 

of all words, ∅(𝑟)  is the (sparse) binary 

representation of 𝒓 ( ∈ ℝ|𝑉|) indicating absence or 

presence of words, and 𝒔(∈ ℝ𝑑) is the embedding 

of the TAC slot 𝑠 . 

    In this setup, the embedding vectors are learned 

by minimizing a margin-based loss function, 

𝐿 = max (0, 1 − 𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠) + 𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠′)) 

namely, optimizing the hinge loss. 

More precisely, there are three steps in the 

automated approach. Firstly, the embeddings of the 

words in rels and the embeddings of TAC slots are 

learned according to a margin-based loss function, 

based on the mapping information between rels 

and TAC slots. Secondly, given a rel 𝑟 , the 

similarity of the rel 𝑟  and TAC slots 𝑠  are 

calculated by score function 𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠), and the 

TAC slot with highest score which is bigger than a 

threshold is returned as the TAC slot that the rel 

align to. Thirdly, the arg1 and arg2 are mapped to 

the entities through the named and nominal 

mentions extracted in Section 3. 

In order to determine the mapping information 

between rels and TAC slots, the training and 

evaluation data of previous cold start task 

(LDC2016E39) and slot filling task (LDC2015E46) 

are processed, where the rel extracted from the 

provenance are positive examples for the given slot, 

and negative examples for other slots. 

4.4 Implicit Relation Information Extractor 

We extract the implicit relations, ie, the relations 

which are not represented by explicit relation 

phrase like OpenIE, but are noun phrases or 

adjective phrases. For example, given a phrase 

“American journalist Ann”, the triple (Ann, 

per:origin, America) should be extracted. These 

implicit relations are detected by IMPLIE 

(Soderland et al, 2015), which firstly extracts the 

features of sentence using Stanford NLP tools like 

the Part-Of-Speech tags (Wu and Weld, 2007, 

Toutanova et al. 2003) and the dependency parser 

(Marneffe and Manning, 2008), etc., and secondly 

extracts substring of the sentence, which contains 

both arg1 and arg2 of the relation, by dependency 

path rules, and outputs tuple (arg1, rel, arg2) 

finally.  

We also link arg1 and arg2 to entities like 

Section 4.3, and link the rel to the TAC slots 

according to the corresponding entity types and 

keyword, as the rels in the output are fairly 

standard and there is no need to align through 

embedding-based method.  

4.5 The Combination Strategy 

The results of four methods are combined by 

simply taking the union. If these systems had 

different outputs for a functional relation, we 

calculate the confidence score by a linear-weighted 

method.  

To be more precise, each method has different 

weight designed by the performance conducted on 

evaluation data of previous years, and the method 

with better performance has higher weight. For 

each triple (ie, entity1, slot, entity2) we extracted, 

the confidence score is the normalization result 



based on the sum of the weights of the methods 

related to the triple.  

For slots that admit only a single value (e.g., 

country_of_birth), we select the triple with highest 

confidence. For slots that can have more than one 

value (e.g, per:parents), we select the top 10 triples 

as the best set of values for the slot to avoid noises. 

5 Cross-document Co-reference Resolution 

  To address the tagging of entities, the system 

employs two steps to cluster the cross-document 

entities across target documents. Firstly, it employs 

entity linker to link entities to Wikipedia, and the 

entities linked to the same Wikipedia  

employs the hierarchical clustering method to 

cluster the entities in terms of the context similarity 

and name similarity between entity mentions. 

Secondly, the heuristic rule aiming to augment the 

cluster results is proposed.  

We use acronym expansion matching in the 

document text. For example, PA is expanded to 

“Pennsylvania” state in several different 

documents in the training data set. Thus, they are 

mapped to the same identifier 

5.1 Candidate entity generator 

In order to reduce the time complexity of the 

linking process, a small set of candidate entities 

that may link to an entity mention detected from 

target documents should be generated in an 

appropriate manner. Namely, we regard the entity 

mention as a query to obtain the candidate set from 

the reference KB (i.e., Wikipedia). Specifically, we 

search the five fields, i.e., the page title, entity alias 

name, entity acronym and document text provided 

by the Wikipedia dump. 

5.2 Entity linker 

It takes two steps to generate the linking 

results. Firstly, coreference resolution is used to 

cluster the entity mentions that are referred as the 

same entity. Secondly, based on the cluster results, 

the system employs seven features to measure the 

similarity between the reference entity and an 

entity mention. These features are listed as follows: 

1)   Name similarity. Namely, the string 

similarity between the entity mention in the 

document text and the candidate entity in the 

reference KB. 

2）   Context similarity. We selected K words 

window surrounding an entity mention as its 

context, and compute the similarity between 

the entity mention and the candidate entity in 

the reference KB using the biterm model 

presented in (Yan et al., 2013), which is an 

extension to the commonly used cosine 

similarity. 

3）   Wikipedia redirect page with identical titles. 

Entity mention in the document matches the 

candidate entity with page referred by 

Wikipedia redirect page with identical titles. 

4）   Acronym matching, which indicates whether 

the entity mention is an acronym of the 

candidate entity and whether the candidate 

entity appears in the document text. 

5）   Number of different entity mentions in the 

target document that lead to the same 

candidate entity in the KB (Cucerzan, 2011). 

7)   Type indicator. A binary indicator determines 

whether the type of the entity mention and the 

candidate entity are different. 

    The optimal entity is finally calculated by 

maximizing the linear combination of these 

similarity features: 

(em )
1...|F|

arg max ( , )
i

ii

j je E
j

f e D

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
, 

where 
em
i  denotes one of the entity mention 

detected from the target document D , 
(em )

i
E

 

denotes the set of candidate entities for 
em
i , F  

denotes the feature set and f( , )e D  denotes the 

score of each feature. We learned the best linear 

coefficient   by using PSO algorithm (Eberhart, 

R. C., & Kennedy, J. (1995, October)) on the TAC 

2015 training data set. 

5.3 NIL entity cluster 

For the NIL entities, three steps are used to 

cluster the NIL entities across target documents. 

Firstly, the similarities between entities are 

measured in terms of the context similarity, name 

similarity and type indicator between entity 

mentions, where the context similarity and type 

indicator are defined in the same way as above. As 

for the name similarity, some heuristic rules are 

combined to promote the performance of clustering. 

The heuristic rules can be stated from three aspects. 



1)   Coreference resolution within one document. 

For example, the entity mention “Mandela” 

and “Nelson Mandela” where the latter 

contains the former as a substring, refer to the 

same entity if they are persons appearing in 

one document in the training data set. 

Therefore, all entity mentions of “Mandela” 

and “Nelson Mandela” are assigned with the 

same NIL identifier.  

2)   Acronym expansion matching in the 

document text. For example, ''UK'' is 

expanded to ''the United Kingdom'' in several 

different documents in the training data set. 

Thus, they are mapped to the same NIL 

identifier.  

3)   Furthermore, we only calculate the 

similarities between entities of the same type, 

otherwise the similarities are equal to zero.  

Secondly, the cluster centroids are 

automatically spotted and excluded from the 

analysis（Rodriguez A, Laio A，2014）. Namely, 

we assumed that the centroid of entities are 

surrounded by neighbor synonymous entities with 

lower densities, and located with a relatively large 

distance away from entities with higher densities.  

The density i  of entity i  is defined as 

( )i ij c

j

d d   , 

where ( ) 1x   if 
0ij cd d 

 and ( ) 0x   

otherwise, and cd
 is a cut-off distance and ijd

 is 

the distance between entity i  and entity 
j

 ,which 

can be simply obtained by the similarity between 

two entities introduced in the first step. 

Moreover, we define the density-based 

distance with respect to an entity, denoted by 

i ,measured by computing the minimum distance 

between the entity i  and any other entities with 

higher density: 

:
min ( )

j i
i ij

j
d

 



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Thus, the centroid of many entities is 

recognized as the one among them for which its 

values of  and 


are both high. Obviously, we 

regard the entity with a relatively high  and a low 


as isolated entity, and an isolated entity forms a 

cluster itself. 

Thirdly, after the cluster centroids have been 

found, each remaining entity is assigned 

recursively to the same cluster of its nearest 

neighbor entity with higher density. 

6 Inference 

The inference module is aimed to infer more 

triples based on the generated ones in Section 4, 

and it is conducted by mainly following these rules: 

1) Rules for place-related slots. For example, 

for an entity that has value about slot “city”, we 

can infer corresponding "stateorprovince" and 

"country" by Gazetteer. Similarly, "country" can 

be inferred from "stateorprovince". 

2) Rules for date-related slots. For example, for 

per:date_of_birth, per:date_of_death, per:age, 

given two of these three slots, the third one can be 

inferred (except birth && age -> death, because 

someone who has birthdate and age may not die 

yet). For example, if A died in 2010 at age 78, so 

we can infer that A was born in 1932. 

3) Rules for family relationships, which is 

illustrated in Table 1. 
Table 1 Rules for inferring family relationships 

A --- B B --- C A --- C 

children siblings children 

children spouse other_family 

children children other_family 

spouse children children 

spouse parents other_family 

spouse siblings other_family 

parents parents other_family 

parents siblings other_family 

parents spouse parents 

4) Rules for implicit-date results. For results 

for the slots describing date which doesn’t express 

year/month/day explicitly, such as “died in 

Tuesday”, we transform it into standard date 

format according to the calendar. 

5) Rules for employee-related slot. For 

example, for a person entity whose title is CEO, 

president, vice-president, or other titles which 

represent top employees, and this person entity has 

slot “per:employee_or_member_of”, we can infer 

slot “org:top_members_employees”. 

6) Rules for inverse slot. For every slot which 

has inverse slot, we add the inverse relation of this 

slot according to the Slot Description Guideline. 



7 Post-processing  

To correct the errors in the slots extracted by the 

Filler component, we introduce the post-processing 

step. Specifically, we mainly use some rules, 

which are listed as below. 

1) The values of some slots must be of certain 

particular type. For example, when slots describe 

relations between people (e.g. spouse, children), 

the type of the results must be person (PER). This 

can be examined by means of the Stanford NER 

tool (Finkel et al., 2005). 

2) Standardization of dates. Convert all answers 

which represent dates to standard date 

format ”XXXX-XX-XX”. 

3) Delete unreasonable answers. For example, 

the results for the slots describing age should be a 

number usually larger than 0 and smaller than 130 

respectively. 

8 Evaluation results 

The results for Cold Start KB track are divided 

into two dimensions (Entity Discovery & Linking 

and Slot Filling) and are illustrated in Table 2 and 

3. 

For Cold Start KB Task, we submitted four runs, 

in which the second run performs best in Entity 

discovery and linking and the first run performs 

best in slot filling. These four runs are: 

Run1: named mention + without nominal 

mention + NIL cluster + different weight in 

relation extractor combination. 

Run2: named mention + nominal mention + NIL 

cluster + different weight in relation extractor 

combination. 

Run3: named mention + without nominal 

mention + without NIL cluster + different weight 

in relation extractor combination. 

Run4: named mention + without nominal 

mention + NIL cluster + same weight in relation 

extractor combination. 

Table 2 and Table 3 are the results of Entity 

Discovery and Slot Filling dimension respectively.  

Table 2 Entity Discovery Result (Engilish) 

 strong_mention_match strong_typed_metion_match mention_ceaf b_cubed 

 P R F1 P R F1 P R F1 P R F1 

1 0.921 0.652 0.763 0.874 0.619 0.725 0.749 0.531 0.621 0.854 0.443 0.584 

2 0.915 0.680 0.780 0.870 0.647 0.742 0.721 0.536 0.615 0.851 0.452 0.590 

3 0.923 0.610 0.735 0.880 0.582 0.700 0.664 0.439 0.528 0.877 0.343 0.493 

4 0.916 0.680 0.781 0.833 0.619 0.710 0.714 0.531 0.609 0.852 0.452 0.591 

Table 3 Slot Filling Result (LDC-MAX, English) 

 hop0_P hop0_R hop0_F hop1_P hop1_R hop1_F All_P All_R All_F 

1 0.2215 0.1176 0.1537 0.0534 0.0357 0.0428 0.1563 0.0902 0.1144 

2 0.2195 0.1176 0.1532 0.0483 0.0325 0.0388 0.1533 0.0891 0.1127 

3 0.2837 0.0964 0.1439 0.1092 0.0422 0.0609 0.2202 0.0783 0.1155 

4 0.2410 0.1095 0.1506 0.0420 0.0162 0.0234 0.1814 0.0783 0.1093 

  

From these results we can conclude that nominal 

mention detection can help improve the recall at 

the cost of precision. In addition, NIL cluster in 

cross-document co-reference resolution can 

improve the performance of entity linking. 

Moreover, combining results of different relation 

extractors with different weights can improve the 

performance of slot filling by a little. 

9 Conclusion 

In this paper, we present the OpenKN system for 

the Cold Start KB Track of the KBP 2016. The 

proposed system contains pre-processing, relation 

extraction, cross-document co-reference resolution, 

inference, post-processing five steps corresponding 

to the task. The official evaluation results are also 

provided.  
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