
OpenKN at TAC KBP 2016

 Manling Li, Xinlei Chen, Yantao Jia, Yuanzhuo Wang, Xiaolong Jin, Zixuan Li,

Juan Yao, Fan Yang, Yunqi Qiu, Jialin Su and Xueqi Cheng

CAS Key Laboratory of Network Data Science and Technology

Institute of Computing Technology

Chinese Academy of Science

jiayantao@ict.ac.cn

Abstract

This paper describes the system OpenKN

which we established in the TAC KBP

2016. In TAC KBP 2016, we participated

in one track: Cold Start KB Track. In order

to complete the task, we developed a five-

step system which solves the problem of

building knowledge base from a document

collection of unstructured text. These five

steps to complete this task are document-

processing, relation extraction, cross-

document co-reference resolution,

inference, and post-processing, where the

relation extractor is the combination of four

methods: rule-based pattern extractor,

bootstrapping, OpenIE and an Implicit

Relation Information Extractor.

1 Introduction

The goal of TAC KBP 2016 is to develop and

evaluate technologies for building and populating

knowledge bases (KBs) from unstructured text. It

contains several tracks, and we participate in Cold

Start Track (KB variant, English) this year.

The Cold Start KBP track builds a knowledge

base from scratch using a given document

collection and a predefined schema for the entities

and relations that will compose the KB. Given a

collection of documents, the Cold Start KB

Construction system must find all PER, ORG, GPE,

LOC, FAC entities in the collection, which are

mentioned by named mentions or nominal

mentions, and create a KB node for each entity as

well as linking each name mention and each

nominal mention to the correct entity node. Then,

41 slots are required to be filled for each entity

node in the KB according to the given document

collection.

For this purpose, we propose a system which

includes five parts to finish this task: document-

processing for preparing entities, relation

extraction (regarded as slot filling, aims to extract

relations by four methods), cross-document co-

reference resolution to merge similar entities,

inferring relations from already-known relations,

and post-processing.

The paper is organized as follows. Section 2

describes the architecture of our system. The

document processing module is explained in

Section 3, including pre-processing, entity

discovery and intra-document co-reference

resolution. Section 4 describes the details of

relation extractor, including the four methods and

the combination strategy. And the cross-document

co-reference resolution is introduced in Section 5,

as well as inference module in Section 6 and post-

processing module in Section7. Section 8 lists the

evaluation results of the task. Finally, we conclude

the paper in Section 9 and present related

references.

2 System Architecture

Our proposed system contains five steps, i.e.,

document-processing, relation extraction, cross-

document co-reference resolution, inference, and

post-processing, as illustrated in Figure 1.

More specifically, in the document-processing

step we extract all named mentions and nominal

mentions from the corpus and save their type and

offset, as well as intra-document co-reference

resolution included. Then the relations of entities

are extracted from corpus (i.e. slot filling) in four

ways: rule-based method, bootstrapping-based

method, OpenIE-based method and implicit

relation extractor. After this step, the task turns

into co-reference resolution of the cross-document

entities. It is implemented by linking entities to

Wikipedia and nil clustering. What followed next

is inference, which supplies the existing relations.

Finally, we utilize the post-processing component

to remove wrong results and format final results. In

the following, we explain each step in detail.

Rule-based
pattern extractor

OpenIE-based
extractor

Relation Extraction

Inference

Post-Processing

Pre-processing
documents

Intra-document
coreference resolution

document-processing

Entity
Discovery

Bootstrapping-
based extractor

Bootstrapping-
based extractor

Cross-document coreference
resolution

Entity
Linker

NIL
Clustering

Figure 1 Architecture of the system

3 Document Processing

 Document processing includes the pre-process

of the corpus, entity discovery and intra-document

co-reference resolution as following.

3.1 Pre-processing

The documents are pre-processed in three

aspects:

1) It should be noted that according to the Entity

Linking Query Development Guidelines, when we

detect discussion forum threads or web documents,

the entity mentions occurring between

<quote></quote> tags are ignored. As a result, we

simply replace these pieces of content by

whitespaces to avoid the errors of offsets.

2) As the publish dates of documents are helpful

to infer the slots concerning date (in most cases is

death date, see details in section 2.4), we extract

the date information of each document. For

newswires, the date is article’s publish date; For

forums, the date is post’s date.

3) The length of each document is validated

according to the given doc-length file.

3.2 Entity Discovery

 Since Cold Start tasks require to return nominal

entity mentions apart from the named entity

mentions, there are two parts in our entity

discovery module, ie, the named entity discovery

and the nominal entity discovery.

3.2.1 Named Entity Discovery

There are three steps to detect all entity

mentions from the target document. Firstly, we use

Stanford NER (Finkel et al., 2005) to extract

person (PER), organization (ORG), geo-political

entity (GEP), facility (FAC) and location (LOC).

Secondly, we use data provided by the reference

KB (LDC2014T16 and LDC2015E42) to

supplement the results of NER. Thirdly, we use the

regular expression to extract post authors as

persons. We combine these results as the final

entity mentions.

In addition, as the Cold Start tasks requires two

more types of entities, ie, facility (FAC) and

location (LOC), we re-trained a named entity

tagger model by Stanford NER tool based on the

corpus from ERE (LDC2015E78, LDC2015E68,

LDC2015E29, LDC2014E31, LDC2014E114,

LDC2013E64) and the training and evaluation data

of trilingual EDL 2015 (LDC2016E38).

3.2.2 Nominal Entity Discovery

To detect nominal entity mentions, we trained a

model by Stanford NER tool as well, and the data

are same as the data used to train the named entity

recognizer in Section 3.2.1, but only extract the

NOM mentions which have <head> information.

In our experiments, it is found that the training data

without <head> information will introduce noise.

And we also trained a model to detect name and

nominal mentions at the same time, whose

performance is not quite good enough. We also

detect the nominal mentions of PER entities

following RPI system (Hong et al., 2015).

3.2.3 Intra-document Co-reference Resolution

There are five steps in our intra-document co-

reference resolution. Firstly, the mentions whose

name are the same are linked together. Secondly, a

co-reference chain is generated by Stanford

CoreNLP (Manning et al., 2014). Thirdly, we

combine the two chains as the final co-reference

chain. Forthly, the entity types of mentions in one

chain should be unified into the entity type same as

the majority. Fifthly, the canonical mention is

selected by following standards:

a) the canonical mention should appear in the

main body of the document, ie, in the content

between <text> tags, to prevent from lack of

contextual information.

b) the start offset of the canonical mention

should be as small as possible.

4 Relation Extractor

The relation extraction step consists of four

modules, namely, the rule-based pattern extractor

module, the bootstrapping-based relation extractor

module, the OpenIE-based relation extractor

module and Implicit Relation Information

Extractor module.

4.1 Rule-based Relation Extractor

The rule-based pattern extractor module is

based on our previous TAC system (Chen X et al.,

2015; Lin H et al., 2014) and it works as follows. It

firstly describes the rule-based patterns in terms of

the context free grammar with respect to the target

slot of entities. Then these grammars are compiled

under the cascaded finite-state transducers (CFT).

With the aid of CFT, the slots are extracted under

the collision detection phrase. More specifically,

the rule-based patterns are firstly represented in the

form of triplets (Heads, Arguments, Body). For

example, to extract the slot per:age, we can define

the pattern as follows:

AGE(person,age):(DIST_5,"_person{NAME}",

"_age{AGE}","year’s old"),

where the parameter DIST_n is used to define the

distance (i.e., n words) between the followed two

arguments. In particular, when the sentences match

two or more rules, in order to boost the extraction

efficiency, we adopt the inversed index to store the

mapping from arguments to their locations in the

corresponding patterns.

4.2 Bootstrapping-based Relation Extractor

Apart from defining these rule-based patterns,

we also consider the bootstrapping technique for

the purpose of recursive extraction. This can be

accomplished by training the data sets and tuning

the parameters appearing in the body of the rules.

For example, these parameters may include the

distances between arguments, the order of

arguments, the distances between arguments by

analyzing the results of dependency parsing. In this

system, the bootstrapping-based relation extractor

is built based on ICE [the Integrated Customization

Environment] (He et al., 2015), which is an

information extraction customization tool.

We use ICE to bootstrap slot filling rules on the

cold start 2015 source corpus (LDC2016E39) and

cold start 2016 source corpus. The ICE

bootstrapper firstly conduct NLP pre-processing on

the corpus, including named entity recognition,

dependency parsing, POS tagging, etc., so that all

dependency patterns are generated at once. Then,

for each slot, we provide ICE with two or three

seed dependency patterns derived from all

dependency paths, and the bootstrapper searches

the most similar dependency patterns and returns

them to the user for review, where the positive and

negative patterns tagged by the user are then sent

back to the ICE bootstrapper for the next iteration

of bootstrapping patterns. Finally, the bootstrapper

generated rules for 22 slots, and the rules extracted

about twelve thousand fillers in total.

4.3 OpenIE-based Relation Extractor

OpenIE [Open Information Extraction] is

another method we used to extract relations. We

use OpenIE v4.0 (Mausam et al., 2012) on the cold

start 2016 source corpus, and it produces tuples of

the form (arg1, rel, arg2) for the given sentence,

where rel is the phrase related to arg1 and arg2 in

the sentence, which may or may not align to the 41

slots of TAC. As a result, the main challenge is to

align the rel to TAC slots as well as mapping the

arg1 and arg2 to entities.

To this end, a more automated approach using

embedding techniques is adopted, apart from the

rule-based aligning approach following (Soderland

et al., 2013, Jia et al. 2016). In order to better

calculate the similarity of rels and TAC slots, the

automated approach makes use of the low-

dimensional embeddings of words in rels and the

embeddings of TAC slots (Weston J et al., 2013),

which are learned according to the constrains of

the form:

𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠) > 1 + max
𝑠′∈{𝑆−𝑠}

𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠′),

where 𝑟 denotes the rel and 𝑠 denotes the true

target TAC slot that the rel should be align to. 𝑆

denotes the set of all 41 TAC slots, and the {𝑆 − 𝑠}

denotes the set of other 40 TAC slots excluding 𝑠.

The score function is defined to score the similarity

of a rel 𝑟 and a TAC slot 𝑠,

𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠) = 𝒇(𝑟)𝑇𝒔

where the bold face denotes the embedding vector

in the low-dimensional space ℝ𝑑 , where 𝑑 is the

dimension of the embedding vector space. Here 𝑓

is a function mapping words into ℝ𝑑 , 𝒇(𝑟) =
 𝑊𝑇∅(𝑟) , where 𝑾 is the matrix of ℝ|𝑉| ,

containing all word embeddings 𝒘 and 𝑉 is the set

of all words, ∅(𝑟) is the (sparse) binary

representation of 𝒓 (∈ ℝ|𝑉|) indicating absence or

presence of words, and 𝒔(∈ ℝ𝑑) is the embedding

of the TAC slot 𝑠 .

 In this setup, the embedding vectors are learned

by minimizing a margin-based loss function,

𝐿 = max (0, 1 − 𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠) + 𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠′))

namely, optimizing the hinge loss.

More precisely, there are three steps in the

automated approach. Firstly, the embeddings of the

words in rels and the embeddings of TAC slots are

learned according to a margin-based loss function,

based on the mapping information between rels

and TAC slots. Secondly, given a rel 𝑟 , the

similarity of the rel 𝑟 and TAC slots 𝑠 are

calculated by score function 𝑆𝑐𝑜𝑟𝑒(𝑟, 𝑠), and the

TAC slot with highest score which is bigger than a

threshold is returned as the TAC slot that the rel

align to. Thirdly, the arg1 and arg2 are mapped to

the entities through the named and nominal

mentions extracted in Section 3.

In order to determine the mapping information

between rels and TAC slots, the training and

evaluation data of previous cold start task

(LDC2016E39) and slot filling task (LDC2015E46)

are processed, where the rel extracted from the

provenance are positive examples for the given slot,

and negative examples for other slots.

4.4 Implicit Relation Information Extractor

We extract the implicit relations, ie, the relations

which are not represented by explicit relation

phrase like OpenIE, but are noun phrases or

adjective phrases. For example, given a phrase

“American journalist Ann”, the triple (Ann,

per:origin, America) should be extracted. These

implicit relations are detected by IMPLIE

(Soderland et al, 2015), which firstly extracts the

features of sentence using Stanford NLP tools like

the Part-Of-Speech tags (Wu and Weld, 2007,

Toutanova et al. 2003) and the dependency parser

(Marneffe and Manning, 2008), etc., and secondly

extracts substring of the sentence, which contains

both arg1 and arg2 of the relation, by dependency

path rules, and outputs tuple (arg1, rel, arg2)

finally.

We also link arg1 and arg2 to entities like

Section 4.3, and link the rel to the TAC slots

according to the corresponding entity types and

keyword, as the rels in the output are fairly

standard and there is no need to align through

embedding-based method.

4.5 The Combination Strategy

The results of four methods are combined by

simply taking the union. If these systems had

different outputs for a functional relation, we

calculate the confidence score by a linear-weighted

method.

To be more precise, each method has different

weight designed by the performance conducted on

evaluation data of previous years, and the method

with better performance has higher weight. For

each triple (ie, entity1, slot, entity2) we extracted,

the confidence score is the normalization result

based on the sum of the weights of the methods

related to the triple.

For slots that admit only a single value (e.g.,

country_of_birth), we select the triple with highest

confidence. For slots that can have more than one

value (e.g, per:parents), we select the top 10 triples

as the best set of values for the slot to avoid noises.

5 Cross-document Co-reference Resolution

 To address the tagging of entities, the system

employs two steps to cluster the cross-document

entities across target documents. Firstly, it employs

entity linker to link entities to Wikipedia, and the

entities linked to the same Wikipedia

employs the hierarchical clustering method to

cluster the entities in terms of the context similarity

and name similarity between entity mentions.

Secondly, the heuristic rule aiming to augment the

cluster results is proposed.

We use acronym expansion matching in the

document text. For example, PA is expanded to

“Pennsylvania” state in several different

documents in the training data set. Thus, they are

mapped to the same identifier

5.1 Candidate entity generator

In order to reduce the time complexity of the

linking process, a small set of candidate entities

that may link to an entity mention detected from

target documents should be generated in an

appropriate manner. Namely, we regard the entity

mention as a query to obtain the candidate set from

the reference KB (i.e., Wikipedia). Specifically, we

search the five fields, i.e., the page title, entity alias

name, entity acronym and document text provided

by the Wikipedia dump.

5.2 Entity linker

It takes two steps to generate the linking

results. Firstly, coreference resolution is used to

cluster the entity mentions that are referred as the

same entity. Secondly, based on the cluster results,

the system employs seven features to measure the

similarity between the reference entity and an

entity mention. These features are listed as follows:

1) Name similarity. Namely, the string

similarity between the entity mention in the

document text and the candidate entity in the

reference KB.

2） Context similarity. We selected K words

window surrounding an entity mention as its

context, and compute the similarity between

the entity mention and the candidate entity in

the reference KB using the biterm model

presented in (Yan et al., 2013), which is an

extension to the commonly used cosine

similarity.

3） Wikipedia redirect page with identical titles.

Entity mention in the document matches the

candidate entity with page referred by

Wikipedia redirect page with identical titles.

4） Acronym matching, which indicates whether

the entity mention is an acronym of the

candidate entity and whether the candidate

entity appears in the document text.

5） Number of different entity mentions in the

target document that lead to the same

candidate entity in the KB (Cucerzan, 2011).

7) Type indicator. A binary indicator determines

whether the type of the entity mention and the

candidate entity are different.

 The optimal entity is finally calculated by

maximizing the linear combination of these

similarity features:

(em)
1...|F|

arg max (,)
i

ii

j je E
j

f e D





,

where
em
i denotes one of the entity mention

detected from the target document D ,
(em)

i
E

denotes the set of candidate entities for
em
i , F

denotes the feature set and f(,)e D denotes the

score of each feature. We learned the best linear

coefficient  by using PSO algorithm (Eberhart,

R. C., & Kennedy, J. (1995, October)) on the TAC

2015 training data set.

5.3 NIL entity cluster

For the NIL entities, three steps are used to

cluster the NIL entities across target documents.

Firstly, the similarities between entities are

measured in terms of the context similarity, name

similarity and type indicator between entity

mentions, where the context similarity and type

indicator are defined in the same way as above. As

for the name similarity, some heuristic rules are

combined to promote the performance of clustering.

The heuristic rules can be stated from three aspects.

1) Coreference resolution within one document.

For example, the entity mention “Mandela”

and “Nelson Mandela” where the latter

contains the former as a substring, refer to the

same entity if they are persons appearing in

one document in the training data set.

Therefore, all entity mentions of “Mandela”

and “Nelson Mandela” are assigned with the

same NIL identifier.

2) Acronym expansion matching in the

document text. For example, ''UK'' is

expanded to ''the United Kingdom'' in several

different documents in the training data set.

Thus, they are mapped to the same NIL

identifier.

3) Furthermore, we only calculate the

similarities between entities of the same type,

otherwise the similarities are equal to zero.

Secondly, the cluster centroids are

automatically spotted and excluded from the

analysis（Rodriguez A, Laio A，2014）. Namely,

we assumed that the centroid of entities are

surrounded by neighbor synonymous entities with

lower densities, and located with a relatively large

distance away from entities with higher densities.

The density i of entity i is defined as

()i ij c

j

d d   ,

where () 1x  if
0ij cd d 

 and () 0x 

otherwise, and cd
 is a cut-off distance and ijd

 is

the distance between entity i and entity
j

 ,which

can be simply obtained by the similarity between

two entities introduced in the first step.

Moreover, we define the density-based

distance with respect to an entity, denoted by

i ,measured by computing the minimum distance

between the entity i and any other entities with

higher density:

:
min ()

j i
i ij

j
d

 





Thus, the centroid of many entities is

recognized as the one among them for which its

values of  and


are both high. Obviously, we

regard the entity with a relatively high  and a low


as isolated entity, and an isolated entity forms a

cluster itself.

Thirdly, after the cluster centroids have been

found, each remaining entity is assigned

recursively to the same cluster of its nearest

neighbor entity with higher density.

6 Inference

The inference module is aimed to infer more

triples based on the generated ones in Section 4,

and it is conducted by mainly following these rules:

1) Rules for place-related slots. For example,

for an entity that has value about slot “city”, we

can infer corresponding "stateorprovince" and

"country" by Gazetteer. Similarly, "country" can

be inferred from "stateorprovince".

2) Rules for date-related slots. For example, for

per:date_of_birth, per:date_of_death, per:age,

given two of these three slots, the third one can be

inferred (except birth && age -> death, because

someone who has birthdate and age may not die

yet). For example, if A died in 2010 at age 78, so

we can infer that A was born in 1932.

3) Rules for family relationships, which is

illustrated in Table 1.
Table 1 Rules for inferring family relationships

A --- B B --- C A --- C

children siblings children

children spouse other_family

children children other_family

spouse children children

spouse parents other_family

spouse siblings other_family

parents parents other_family

parents siblings other_family

parents spouse parents

4) Rules for implicit-date results. For results

for the slots describing date which doesn’t express

year/month/day explicitly, such as “died in

Tuesday”, we transform it into standard date

format according to the calendar.

5) Rules for employee-related slot. For

example, for a person entity whose title is CEO,

president, vice-president, or other titles which

represent top employees, and this person entity has

slot “per:employee_or_member_of”, we can infer

slot “org:top_members_employees”.

6) Rules for inverse slot. For every slot which

has inverse slot, we add the inverse relation of this

slot according to the Slot Description Guideline.

7 Post-processing

To correct the errors in the slots extracted by the

Filler component, we introduce the post-processing

step. Specifically, we mainly use some rules,

which are listed as below.

1) The values of some slots must be of certain

particular type. For example, when slots describe

relations between people (e.g. spouse, children),

the type of the results must be person (PER). This

can be examined by means of the Stanford NER

tool (Finkel et al., 2005).

2) Standardization of dates. Convert all answers

which represent dates to standard date

format ”XXXX-XX-XX”.

3) Delete unreasonable answers. For example,

the results for the slots describing age should be a

number usually larger than 0 and smaller than 130

respectively.

8 Evaluation results

The results for Cold Start KB track are divided

into two dimensions (Entity Discovery & Linking

and Slot Filling) and are illustrated in Table 2 and

3.

For Cold Start KB Task, we submitted four runs,

in which the second run performs best in Entity

discovery and linking and the first run performs

best in slot filling. These four runs are:

Run1: named mention + without nominal

mention + NIL cluster + different weight in

relation extractor combination.

Run2: named mention + nominal mention + NIL

cluster + different weight in relation extractor

combination.

Run3: named mention + without nominal

mention + without NIL cluster + different weight

in relation extractor combination.

Run4: named mention + without nominal

mention + NIL cluster + same weight in relation

extractor combination.

Table 2 and Table 3 are the results of Entity

Discovery and Slot Filling dimension respectively.

Table 2 Entity Discovery Result (Engilish)

 strong_mention_match strong_typed_metion_match mention_ceaf b_cubed

 P R F1 P R F1 P R F1 P R F1

1 0.921 0.652 0.763 0.874 0.619 0.725 0.749 0.531 0.621 0.854 0.443 0.584

2 0.915 0.680 0.780 0.870 0.647 0.742 0.721 0.536 0.615 0.851 0.452 0.590

3 0.923 0.610 0.735 0.880 0.582 0.700 0.664 0.439 0.528 0.877 0.343 0.493

4 0.916 0.680 0.781 0.833 0.619 0.710 0.714 0.531 0.609 0.852 0.452 0.591

Table 3 Slot Filling Result (LDC-MAX, English)

 hop0_P hop0_R hop0_F hop1_P hop1_R hop1_F All_P All_R All_F

1 0.2215 0.1176 0.1537 0.0534 0.0357 0.0428 0.1563 0.0902 0.1144

2 0.2195 0.1176 0.1532 0.0483 0.0325 0.0388 0.1533 0.0891 0.1127

3 0.2837 0.0964 0.1439 0.1092 0.0422 0.0609 0.2202 0.0783 0.1155

4 0.2410 0.1095 0.1506 0.0420 0.0162 0.0234 0.1814 0.0783 0.1093

From these results we can conclude that nominal

mention detection can help improve the recall at

the cost of precision. In addition, NIL cluster in

cross-document co-reference resolution can

improve the performance of entity linking.

Moreover, combining results of different relation

extractors with different weights can improve the

performance of slot filling by a little.

9 Conclusion

In this paper, we present the OpenKN system for

the Cold Start KB Track of the KBP 2016. The

proposed system contains pre-processing, relation

extraction, cross-document co-reference resolution,

inference, post-processing five steps corresponding

to the task. The official evaluation results are also

provided.

References

Finkel J. Rose, Grenager T. and Manning C. 2005.

Incorporating non-local information into information

extraction systems by gibbs sampling, Proceedings of

the 43rd Annual Meeting on Association for

Computational Linguistics, 363-370.

He Y. and Grishman R.. 2015. ICE: Rapid in- formation

extraction customization for nlp novices. In

Proceedings of the 2015 Conference of the North

American Chapter of the Association for Compu-

tational Linguistics: Demonstrations, pages 31–35,

Denver, CO. Association for Computational Linguis-

tics.

He Y. and Grishman R. 2015. The NYU Cold Start

System for TAC 2015. In Proc. Text Analysis

Conference (TAC2015).

Hong Y., Lu D., Yu D., Pan X., Wang X., Chen Y.,

Huang L., and Ji H.. 2015. Rpi blender tac-kbp2015

system description. In Proc. Text Analysis

Conference (TAC2015).

Mausam, Schmitz M., Bart R., Soderland S., and

Etzioni O. 2012. Open language learning for

information extraction. In Proceedings of EMNLP.

Soderland S., Gilmer J., Robert Bart, Oren Et- zioni,

and Daniel S. Weld. 2013. Open information

extraction to KBP relations in 3 hours. In

Proceedings of TAC-KBP 2013.

Jia Y, Wang Y, H Lin, et al. Locally Adaptive

Translation for Knowledge Graph Embedding, AAAI,

2016.

Weston J, Bordes A, Yakhnenko O, et al. Connecting

Language and Knowledge Bases with Embedding

Models for Relation Extraction[J]. 2013.

Lin H, Zhao Z, Jia Y, et.al. OpenKN at TAC KBP 2014.

In Proceedings of TAC-KBP 2014.

Chen X, Jia Y, Wang Y, eet al., OpenKN at TAC KBP

2015. In Proceedings of TAC-KBP 2015.

Toutanova K., Klein D., Manning C., and Singer Y.

2003. Feature-rich Part-of-Speech Tagging with a

cyclic dependency network. Proceedings of HLT-

NAACL 2003, 252-259.

Soderland S., Hawkins N., Kim G. L., and Weld D. S.

2015. University of Washington System for 2015

KBP Cold Start Slot Filling. In Proceedings of TAC-

KBP 2015.

Marneffe M. D. and Manning C. 2008. Stanford

Dependencies manual.

Wu F. and Weld D. 2007. Autonomously semantifying

Wikipedia. Proceedings of the sixteenth ACM

conference on information and knowledge

management, 41-50.

Manning, Christopher D., Mihai Surdeanu, John Bauer,

Jenny Finkel, Steven J. Bethard, and David

McClosky. 2014. The Stanford CoreNLP Natural

Language Processing Toolkit In Proceedings of the

52nd Annual Meeting of the Association for

Computational Linguistics: System Demonstrations,

pp. 55-6

Rodriguez A, Laio A. Clustering by fast search and find

of density peaks[J]. Science, 2014, 344(6191): 1492-

1496.

Yan X, Guo J, Lan Y, et al. A biterm topic model for

short texts[C]//Proceedings of the 22nd international

conference on World Wide Web. ACM, 2013: 1445-

1456.

Eberhart R C, Kennedy J. A new optimizer using

particle swarm theory[C]//Proceedings of the sixth

international symposium on micro machine and

human science. 1995, 1: 39-43.

