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Abstract

IHMC designed and implemented two
variants of an event-detection system,
one that used manually created rules
(DISCERN-R) and another one that used
rules learned using multiple deep neu-
ral networks (DISCERN-D). The former
uses very rich linguistic resources (Verb-
Net, CatVar, Semantic Role Labeling,
NER, POS tagging, dependency parsing,
and coreference resolution) and the latter
supplants these features with learned em-
bedding vectors. These systems were ap-
plied to two tasks in the NIST TAC KBP
2016 Event Track: Event Nugget De-
tection and Coreference (EN) and Event
Argument Extraction and Linking (EAL)
for English language. Additionally, the
neural network system was used for these
two tasks in Spanish.

1 Introduction
With increasingly large volumes of textual data
available, most of which is unstructured, it has
become necessary to build and apply automatic
systems for extraction of information for the
analysis of data that is too large for fully man-
ual processing. The Text Analysis Conference
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(TAC) at NIST attempts to encourage research
and development of such systems “by providing
a large test collection, common evaluation pro-
cedures, and a forum for organizations to share
their results.”

The 2016 NIST TAC Event track focuses on
detection of information about events from un-
structured text. The extracted information could
be used to populate a knowledge base, among
other uses. Two NIST TAC KBP tasks are
described in this paper, one for Event Nugget
Detection and Coreference (EN) and one for
Event Argument Extraction and Linking (EAL).
Event Nugget Detection refers to the identifi-
cation of explicit events mentions, sometimes
called “nuggets” or “triggers”, in English texts.

The relevant event types/subtypes are taken
from the Rich ERE annotation guidelines. The
examples in 1.1 and 1.2 (Mitamura et al., 2015)
express the same event type, Conflict.Attack;
however, as the examples show, an event men-
tion may involve a single word (1.1) or a multi-
word expression (1.2).

Example 1.1
The attack by insurgents occurred on Saturday.

Example 1.2
Kennedy was shot dead by Oswald.

The EN task additionally involves identifying
a realis state (ACTUAL, GENERIC, OTHER)
for each event mention.

EAL involves extracting information about
entities and possibly times and/or locations of
an event, and the role these entities play in the



event. For example, in 1.2, the event type is
Conflict.Attack, the entity Kennedy plays the
role of a Target and entity Oswald plays the
role of an Attacker in the event. The EAL task
also involves linking the arguments that belong
to the same event, as well as identifying each
event’s realis state.

We present two variants of our event detec-
tion system for the two tasks described above,
as applied to a development data set from NIST
TAC 2015. We also discuss the application of
these variants to the NIST TAC 2016 evaluation
data. The structure of the paper is as follows:
Section 2 presents related work, section 3 de-
scribes our process of event detection and the
two system variants we built in detail, and sec-
tion 4 presents a discussion of the results for
our two variants on the development as well as
the evaluation data. Finally, section 5 presents a
summary of our findings and a brief discussion
of potential work.

2 Related Work

Previous work on event detection has focused
primarily on formal genre, such as news ar-
ticles. For example, Roberts and Harabagiu
(2011) focused on extraction and representa-
tion of the type of event and its participants,
using topic modeling to detect ‘event scenar-
ios’ in formal texts. However, in current times,
a huge amount of data is becoming available
in other genres as well. Social media, dis-
cussion forums, and various types of outlets
where individuals independently publish (with
corresponding comment sections) can provide
the most up-to-date information about current
events. The NIST TAC tasks involve detection
of events in both formal (news genre) and in-
formal (social media) texts. Thus, our work fo-
cuses on both these genres of texts.

In terms of the approaches used, many event
extraction systems use syntax-based approaches
to event detection. For example, Riloff (1993)
used syntactic patterns, while Grishman et al.

(2005) and McClosky et al. (2011) used a
combination of syntactic patterns and statistical
classifiers. Dependency parsing has been used
quite widely for relation and event extraction,
e.g., Nakashole et al. (2012), Alfonseca et al.
(2013), Lewis and Steedman (2013), Rusu et al.
(2014), and Sun et al. (2015).

While syntactic patterns can help us to de-
tect events and their arguments to some extent,
they are not always sufficient. Sometimes an
accurate characterization of an event requires
semantic context. Exner and Nugues (2011)
used semantic parsing (semantic role labeling;
SRL) to extract events from texts automatically,
but their system misidentified agents quite fre-
quently. Such errors could be reduced with the
help of named entity recognition (NER) and
syntactic parsing. The growing need for bulk
semantic information extraction across differ-
ing domains and genres has led to an expan-
sion in annotated data, e.g., Bies et al. (2016);
Song et al. (2016), ontologies with an event-
based semantics, e.g., Bonial et al. (2016), and
development of frameworks to build such re-
sources manually or semi-automatically, e.g.,
Mirza and Tonelli (2014); Mostafazadeh et al.
(2016); Nakamura and Kawahara (2016).
DISCERN differs from approaches above in

that it makes use of both syntactic and seman-
tic information, as well as manual and machine-
learning techniques, for the detection of event
triggers and their arguments. Prior work on
event detection (Bhatia et al., 2015; Dorr et al.,
2014; Dubbin et al., 2016), combined with a
semantic approach (Ferguson et al., 1996), en-
ables a more robust event detection capabil-
ity, starting with syntactic dependency relations
upon which semantic analysis is applied. A
semantic classification of verbs and arguments
that takes into account categorial variants of
verbs widens the potential for event extraction
(see VerbNet (Levin, 1993; Schuler, 2005), the
NIST ontology (NIST, 2015), and CatVar (Dorr
et al., 2003)).

Chen et al. (2014) designed ClearEvent,



which is similar to our approach in that it com-
bined syntax, deep semantic analysis as well as
machine learning. The use of CatVar in DIS-
CERN shows promising results for a wider cov-
erage of event triggers beyond what would be
available in the ClearEvent system.

A system developed by Mannem et al.
(2014), that also employed machine learning
techniques (joint extraction using beam search
for decoding and an early update perceptron
for training the model) and some syntactic fea-
tures, yielded results that were accurate, but
with limited recall. An advantage of this ap-
proach is that it captured interdependencies be-
tween event triggers and their arguments. Al-
though not yet explored, it is expected that the
combination of this approach with the semantic
classification of verbs and categorial variants in
DISCERN will be an important step in address-
ing the precision/recall tradeoff.

Sammons et al. (2014) used bag-of-words
and part-of-speech (POS) as features for deter-
mination of realis. Additional information be-
yond these features was used in DISCERN; for
example, negative lemmas such as not and the
notion of “collapsing” for support-verb triggers
such as the word conduct in conduct an attack.
These additions were critical for the correct as-
signment of realis, e.g., did not conduct an at-
tack (where the realis is OTHER) versus at-
tacked (where the realis is ACTUAL).

Another approach is based on deep-learning,
using multi-layered neural networks to repre-
sent words and phrases in a continuous vector-
space, called an embedding (Bengio et al.,
2003; Hermann et al., 2014; Mikolov et al.,
2013; Socher et al., 2013). Dasigi and Hovy
(2014) use a recursive model of event struc-
ture to create a vector representation of events
which can be used to distinguish between ac-
tual and anomalous events. Feng et al. (2016)
combine a bi-directional, recurrent Long-Short
Term Memory neural network (LSTM) with a
convolutional neural network to create an em-
bedding that captures local and long-range con-

text that detects event trigger words. Addition-
ally, Nguyen et al. (2016) also experiments with
combining recurrent and convolutional neural
networks to jointly detect event triggers as well
as event arguments.

3 The Process of Event Detection

We developed two variants of DISCERN
(Discovering and Characterizing Emerging
Events), a system designed to detect a set of
events, such as those specified in the NIST
(2014), NIST (2015) and NIST (2016) Event
tasks. Specifically, these variants were namely
DISCERN-R (that used manually created rules)
and DISCERN-D (that used rules learned using
a neural net system).1 The description of the
process of event detection used by each variant
of the DISCERN system is provided below.
DISCERN-R relies on a resource of

semantically-linked categorial variants (Cat-
Var), to develop a mapping between verbs
(and verb classes) to each event type of inter-
est. CatVar clusters were used to extend the
verb-centric syntactic patterns to additional
patterns containing part-of-speech variants,
e.g., “nabbing” was mapped to “nab” which
was then mapped to “Justice.Arrest-Jail”.
DISCERN-D excludes all of the features

used by DISCERN-R except for NER, corefer-
ence resolution, and dependency parses. Words
and context are represented by learned embed-
ding vectors. These embeddings capture much
of the same semantic and syntactic information
as the features of earlier approaches, while al-
lowing the discovery of more complicated pat-

1The Events evaluated in the TAC 2016 Evaluation
are divided into 8 types, each with a number of sub-
types: Conflict (Attack, Demonstrate), Contact (Broad-
cast, Contact, Correspondence, Meet), Justice (Arrest-
Jail), Life (Die, Injure), Manufacture (Artifact), Move-
ment (Transport-Artifact, Transport-Person), Personnel
(Elect, End-Position, Start-Position), Transaction (Trans-
action, Transfer-Money, Transfer-Ownership). An area
of future work is to expand from these more general cate-
gories to more refined ones, and also to add new domains.



terns when fed through multiple layers of a neu-
ral network.

For both EN and EAL, DISCERN was ap-
plied after a set of rules for event triggers and
argument detection were manually crafted or
learned:

1. Preprocessing the data: Dependency and
constituency parses were generated for
each sentence. These were subsequently
annotated with linguistic features, such
as VerbNet, CatVar, SRL, NER, and
coreference for the DISCERN-R variant,
and with NER and coreference for the
DISCERN-D variant.

2. Implementation of DISCERN: Pre-
defined rules were applied to identify the
event triggers and their arguments, as well
as assigning realis values to them. The two
variants of DISCERN varied with respect
to the rules that were applied (each variant
created its own set of rules using different
approaches, as described in sections 3.3
and 3.4).

The two stages of the event detection process
are described in sections 3.1 and 3.2. In sec-
tions 3.3 and 3.4, the differences among the two
DISCERN variants are discussed with respect
to rule creation and learning.

3.1 Preprocessing the data

Documents were first stripped of XML, tok-
enized, and then split into sentences using the
Stanford CoreNLP Natural Language Process-
ing Toolkit (Manning et al., 2014). Next, POS
tagging, lemmatization, named entity recogni-
tion, and coreference annotations were applied
using the default CoreNLP English probabilis-
tic context-free grammars (PCFG) parse model
and 3class, 7class, and MISCclass (in that or-
der) NER models.

Each annotated sentence representation from
a document was passed through a pipeline

wherein additional lexical and semantic re-
sources were automatically added to improve
DISCERN-R’s capabilities in recognizing pat-
terns. The pipeline included the following
stages:

1. Each lemma was used to search CatVar.
Any variations found were added as Word-
POS pairs.

2. Each token was POS-tagged as a verb was
augmented with the corresponding Verb
Class from VerbNet.

3. Each sentence was reprocessed by the
SENNA semantic role labeler and each to-
ken was labeled if it occurred within a se-
mantic role.

4. Finally, the sentence was restructured if it
contained a support-verb.

The primary benefit of CatVar was its abil-
ity to determine whether a categorial variation
of a known verb was encountered in the input.
This extends our ability to identify possible trig-
gers beyond only verbal lemmas for an event to
include categorial variants as well. The focus
here was on detecting nominalized verbs such
as “the merger of the two companies” or “the
destruction of the city” beyond the verbal lem-
mas merge or destroy, respectively. If a token
was found to have a verb variation in addition
to its given POS, the serialized annotation was
extended to include it.

The final step of the pipeline used all previ-
ous information for the application of a support-
verb and event-nominal merger rule that “col-
lapsed” the structure of a phrasal unit contain-
ing a support-verb head coupled with a nomi-
nal trigger. For example, while the dependency
parser might pick “declare” as the root of the
tree in the phrase “declare bankruptcy,” the de-
sired event is a Business.Declare-Bankruptcy
event, not a declare event. Support-verb de-
tection was also used in determining the realis



values for events with nominal triggers, as de-
scribed in Section 3.3.

A key benefit to deep-learning is the reduced
reliance on feature engineering and preprocess-
ing. Accordingly, DISCERN-D only relies
on the tokenization, dependency parsing, NER,
and coreference annotations from the prepro-
cessing step. Other differences will be ex-
panded on in sections 3.3 and 3.4.

3.2 Implementation of DISCERN
Each of the two DISCERN variants was ap-
plied to the preprocessed data in 4 steps. First,
DISCERN located potential triggers for each
event subtype. Second, each trigger was as-
signed a realis value according to linguistic
rules. Next, the system located role filling ar-
guments for a trigger among its children in the
dependency tree. Finally, DISCERN resolved
arguments to canonical argument strings (CAS)
according to annotated coreference and named-
entity data. For the EN task, the process stopped
after the realis assignment took place.

Each DISCERN variant employed a differ-
ent strategy for locating potential triggers, as
described in Sections 3.3 and 3.4. DISCERN’s
operation relied on lemma and CatVar annota-
tions primarily to find potential trigger words.
CatVar annotations enabled the generalization
of results to semantically related variants of the
verbs denoting relevant events.

The next step was to determine an event’s ar-
guments from its trigger’s dependents (i.e., it’s
children in the dependency tree). As with the
first step, the method for detecting arguments
was governed by the DISCERN variant. How-
ever, each variant generally relied on a combi-
nation of some or all of the following features:
dependency type, semantic role label, named
entity type, and POS annotations when extract-
ing event arguments.

The final canonical argument string (CAS)
represented the first mention of entity argu-
ments. The DISCERN variants resolved CAS
according to the Stanford CoreNLP coreference

annotations where available. For named enti-
ties, entity type information was used to find
the full named entity string, e.g., “States” be-
comes “The United States”. Lastly, time argu-
ments were resolved according to TIMEX an-
notations.

3.3 DISCERN-R: Based on Manually
Created Linguistic Rules

DISCERN-R used output from the Stanford
Dependency Parser to extract events through
previously hand-crafted linguistically moti-
vated rules according to the NIST event descrip-
tions. Triggers for event types were identified in
the rules based on lemma matching against var-
ious lexical resources, such as dictionaries, the-
saurus, VerbNet, CatVar, and OntoNotes. Once
a trigger was identified, each of its children in
the dependency tree was considered as a possi-
ble argument for the event-type. Semantic rules
for roles such as Agent, Victim, Prosecutor, etc.
were used to determine which children filled
them. For example, a Conflict.Attack event re-
quires an Agent role to be filled by an entity,
hence based on a rule for the Agent role for this
event type, that entity was extracted from the
dependency relations nsubj (subject for a verb)
or poss (possessive, as in “The United State’s
invasion of Iraq”).

Figure 1 shows a diagram representing
DISCERN-R rules with an example from the
event sub-type Justice.Arrest-Jail. Part 1 of
the rule determines the event subtype to be
Justice.Arrest-Jail based on the lemma. Part 2
determines the roles for various children (pos-
sible arguments) of the lemma in the event sub-
type based on a variety of semantic and syntac-
tic features; this is done for each role allowed
by that event.

Once a trigger was identified, realis was
assigned to the corresponding anchor in the
dependency tree according to a series of
linguistically-motivated rules applied to an an-
chor and its children. The realis values (AC-
TUAL, GENERIC, or OTHER) were based on



Figure 1: A representative diagram of a DISCERN-
R rule with an example from the Justice.Arrest-Jail
event sub-type.

Figure 2: Realis rules depend on a combination of
tense, aspect, POS, and negation.

tense and aspect encoded in the POS tags, neg-
ative lemmas, etc. For the cases where the
triggers involved support-verbs and event nom-
inals, realis was assigned after the support-verb
trigger collapsing had taken place, so the anchor
for the realis value was the merged result and
had the POS of the original support-verb. The
rules are described in pseudocode in Figure 2.

3.4 DISCERN-D: Based on Deep Neural
Networks

DISCERN-D implements deep learning tech-
niques to construct and train neural networks
that detect event nuggets and their arguments.
Like DISCERN-R, this approach first detects

event nugget mentions and then finds argu-
ments using the containing sentence’s depen-
dency structure. However, DISCERN-D learns
from supervised training data, relying on the
data to discover features and patterns, rather
than engineering features and rules with linguis-
tic expertise.

3.4.1 Event Nugget Detection
The DISCERN-D event nugget detection al-

gorithm is based on four neural networks. Each
network takes a tokenized sentence as input
and maps the tokens to learned word embed-
dings. These embedding sequences are then
fed into a bidirectional Long-Short Term Mem-
ory (LSTM) network layer (Hochreiter and
Schmidhuber, 1997), the output of which is
used by a task-specific classifier.

The first neural network is the sentence fil-
ter. As Figure 3 shows, the sentence filter net-
work merges the final output of the forward and
backward LSTMs to create a representation of
the entire sentence, which is then fed into a bi-
nary classifier. This network predicts whether a
sentence has at least one event nugget. Filtering
out sentences without event nuggets reduces the
imbalance of nugget to non-nugget tokens in the
training data, allowing the remaining networks
to boost recall without negatively affecting pre-
cision.

Embedding EmbeddingEmbedding Embedding …

Token TokenTokenToken

LSTM LSTM LSTM LSTM…

…

Sentence Filter

Figure 3: The architecture of the DISCERN-D sen-
tence filter network.

The remaining three networks have roughly
the same architecture, shown in Figure 4. In
these networks, the hidden state of the bidi-
rectional LSTM is used by the classifiers at



each timestep (i.e. each token). The event
nugget classifier uses a three state, Beginning,
Inside, Outside (BIO), classifier to annotate
event nugget phrases. The type and realis of
the event are assigned according to the output
of the type and realis classifiers for the first to-
ken of the nugget. To account for the possibility
of a single nugget representing multiple event
types, each multi-type combination observed in
the training data is encoded as its own class.

Nugget 
Type 
Realis

Embedding EmbeddingEmbedding Embedding …

Token TokenTokenToken

LSTM LSTM LSTM LSTM…

…

Nugget 
Type 

Realis

Nugget 
Type 

Realis

Nugget 
Type 

Realis

Figure 4: The architecture of the DISCERN-D
nugget, event type, and realis networks.

3.4.2 Event Argument Detection
Once DISCERN-D has found all of the

event nuggets in a sentence, it generates pro-
posal arguments from the set of named entities
and coreferenced entities annotated by Stanford
CoreNLP. Each proposal argument in a sen-
tence is potentially the argument of all event
nuggets in that sentence, so the event argument
network is applied to each <nugget, proposal
argument> pair. Each pair is classified as either
none, meaning the proposal argument is not an
argument for that event, or one of the roles al-
lowed by the event subtype. Only the argument
role is classified, as the realis is assumed to be
the same as that assigned to the paired event
nugget.

Figure 5 demonstrates the architecture of
the event argument neural network. First, the
proposal argument and event nugget phrases
are tokenized and sent through two bidirec-
tional LSTM’s, creating two phrasal embed-
dings. Then, the event subtype and realis are

also included as features. Finally, the depen-
dency path from the head of the event nugget
phrase to the head of the proposal argument
phrase is also fed into another bidirectional
LSTM, giving the network a sense of the syn-
tactic relationship between the nugget and the
argument. The dependency path is represented
as a sequence of triples representing the direc-
tion of the dependency, the type of the depen-
dency, and the token of the dependent.

Proposal 
Phrase

LSTM

Nugget 
Phrase

LSTM

Realis Type Dependency 
Path

LSTM

Argument Classifier

Figure 5: The architecture of the DISCERN-D
event argument neural network.

4 Evaluation and Discussion
This section will analyze and compare the re-
sults of the two DISCERN variants on devel-
opment data. The aim of this analysis is to de-
termine the strengths and weaknesses of both
approaches. Do these approaches compliment
each other? If so, what aspects can or should
be integrated to improve the overall DISCERN
system? Sections 4.1 and 4.2 analyse the per-
formance of DISCERN on the event nugget and
event argument tasks, respectively.

4.1 Event Nuggets
In this section, DISCERN-R and DISCERN-D
are evaluated against the TAC KBP 2015 Event
Nugget evaluation data set LDC (2015) as a de-
velopment data set.

Table 1 shows the overall performance of
DISCERN-R and DISCERN-D on the devel-
opment data. The data shows that DISCERN-
D outperforms DISCERN-R across all three
metrics. DISCERN-D achieved an F-score
of 36.6%, a 8% improvement over the 28.4%



DISCERN-R achieved on the development
data. This is representative of similar improve-
ments in precision and recall.

Run Precision Recall F1-score
DISCERN-R 31.7% 25.6% 28.4%
DISCERN-D 41.2% 32.9% 36.6%

Table 1: DISCERN-R and DISCERN-D develop-
ment performance on TAC 2015 Event Nugget eval-
uation data.

Table 2 breaks down the performance of
DISCERN-R and DISCERN-D by scored
attribute. This breakdown allows a more
thorough analysis of the differences between
DISCERN-R and DISCERN-D.

Most of the overall improvement of the
DISCERN-D event mention detection ap-
proach comes from improved plain mention
detection with a plain F-score of 63.5% vs.
46.0%. We attribute this improvement to two
key factors: 1) the sentence neural network al-
lows DISCERN-D to skip sentences without
event mentions, reducing false-positives; 2) the
context provided by the bidirectional LSTMs
enables the network to reasonably handle un-
known words.

There was also a slight improvement
to overall performance because of im-
proved Realis classification. While 67.8%
of DISCERN-R Realis labels are assigned
correctly, DISCERN-D assigns correct Realis
to 74.6% of mentions. DISCERN-R uses a
small set of linguistic rules to capture most
sentence constructions. DISCERN-D is more

Prec Rec F1
R D R D R D

plain 52% 72% 42% 57% 46% 64%
type 47% 55% 38% 44% 42% 49%
realis 35% 53% 28% 43% 31% 47%
all 32% 41% 27% 33% 28% 37%

Table 2: DISCERN-R and DISCERN-D develop-
ment performance by scoring attribute.

generalized and less focused on common
special cases.

Interestingly, DISCERN-R was more accu-
rate when assigning event types. 90.3% of the
event types assigned by DISCERN-R were cor-
rect, compared to 76.4% for DISCERN-D. This
can be attributed to the way DISCERN-D han-
dles mentions with multiple types. DISCERN-
D treats each combination of types assigned to a
mention as distinct from either component type.
This means that it can only discover combina-
tions assigned in the training data and that in-
formation is not shared between combinations
that share types. On the other hand, each pos-
sibly event type assignment is entirely indepen-
dent of the other in DISCERN-R.

4.2 Event Arguments

The DISCERN event argument variants were
both tested against the dual-agreement results
from TAC 2014 KBP Event Argument Ex-
traction Evaluation Assessment Results (LDC,
2014). The development data has been modified
to match the ontology of the TAC 2016 KBP
Event Argument Extraction evaluation.

Table 3 presents the results of DISCERN-
R and DISCERN-D on the EAL development
data. These results are not as clear cut as
the event nugget performance in section 4.1.
The balanced performance of DISCERN-R re-
sults in a higher overall F-score (7.7%) than
DISCERN-D. DISCERN-D has 50% higher
recall than DISCERN-R(11.4% compared to
7.4%).

System Precision Recall F1-score
DISCERN-R 7.9% 7.4% 7.7%
DISCERN-D 4.9% 11.4% 6.8%

Table 3: Event argument performance of
DISCERN-R and DISCERN-D on develop-
ment data.

The relatively low precision of DISCERN-
D is the lower result of two factors. First, the



DISCERN-R argument rules only consider ar-
guments that are children of the event nugget.
While this misses many arguments (which is
why the DISCERN-D recall is higher), it acts
as a useful heuristic. This also reduces the fea-
ture complexity, as there is only ever one de-
pendency between a nugget and a proposal ar-
gument.

The second cause is the lack of semantic
information included in the deep neural net-
works’ features. DISCERN-R gets a large per-
formance boost from semantic features like se-
mantic role labels (Dubbin et al., 2016). While
word and phrase embeddings have been shown
to discover some level of semantics (Hermann
et al., 2014; Mikolov et al., 2013; Socher et al.,
2013), this usually involves large amounts of
training data, which is limited for this task.

5 Conclusion and Future Work

We have presented two variants of our DIS-
CERN Event Detection system that we devel-
oped for the TAC KBP 2016 Event Track, viz.,
a manual rule-based system DISCERN-R and
a deep learning based system DISCERN-D.
Sections 4.1 and 4.2 demonstrated that even
though DISCERN-D had much better EN per-
formance, there is room for improvement in
both implementations of DISCERN. These re-
sults show that there is benefit to be achieved
by incorporating a linguistic and semantic view
of the data in event argument detection. Future
work will focus on integrating this knowledge
without sacrificing the efficiency and power of
the machine learning approach.

For example, the data problem could be ame-
liorated by pretraining the initial layers of the
neural network on large amounts of unanno-
tated data. This would require the development
of a loss function that applies to nugget and ar-
gument phrases as well as decision paths.
DISCERN-D may also benefit from a more

semantically-informed sentence structure, like
semantic role labels or Abstract Meaning Rep-

resentations (Banarescu et al., 2013). These
would connect semantically linked concepts in
sentences, rather than strictly focusing on syn-
tactic links.

Disclaimer

The views and conclusions contained herein are
those of the authors and should not be interpreted as
necessarily representing the official policies or en-
dorsements, either expressed or implied, of DARPA,
ODNI, IARPA, AFRL, or the U.S. Government. The
U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon.
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