
NAIST Participation in the TAC KBP 2016 Cold Start Slot Filling Task:
Combining CNN-based and Bootstrapping-based Methods

Kodai Sudo Akihiko Kato Van-Thuy Phi∗ Hiroyuki Shindo Yuji Matsumoto
Graduate School of Information Science
Nara Institute of Science and Technology

Ikoma, Nara 630-0192, Japan
{sudo.kodai.rx2, kato.akihiko.ju6,

phi.thuy.ph8, shindo, matsu}@is.naist.jp

Abstract

Nara Institute of Science and Technology
(NAIST) participated in the English Slot Fill-
ing Task in TAC-KBP 2016. Our system con-
sists of two stages: (1) Candidate Genera-
tion stage, and (2) Candidate Validation stage.
In the candidate generation stage, we retrieve
documents relevant to a given query and se-
lect candidates based on the RelationFactory
system. We also add more constraints to deal
with some new slots this year. In the candidate
validation stage, we combine results from two
separate classifiers, namely CNN-based clas-
sifier and bootstrapping-based classifier.

1 Introduction

The main goal of the Slot Filling task in TAC-KBP
2016 is to extract relational information about query
entities from a large text corpus. Our proposed sys-
tem consists of two stages: Candidate Generation
Stage and Candidate Validation Stage. In the can-
didate generation stage, we retrieve documents rele-
vant to a given query and select candidates by using
the RelationFactory system (Roth et al., 2014). In
the candidate validation stage, we select top-k candi-
dates in terms of confidence scores by combining re-
sults from two separate classifiers: one CNN-based
classifier and one bootstrapping-based classifier. Fi-
nally, our system returns values for predefined slots
(attributes) for given entities.

∗The first three authors contributed equally to this work.

2 Dataset

2.1 Resource for CNN-based Classifier

We use Angeli’s dataset (Angeli et al., 2014) as
the training data for the CNN-based classifier. The
dataset is built by using Amazon Mechanical Turk
to crowdsourcing annotations. Angeli et al. collect
5 annotations for each sentence, and use the most
commonly agreed answer as the ground truth. A
total of 23,725 examples were annotated, and the
dataset includes confidence scores acquired by ag-
gregating annotations.

2.2 Resource for Bootstrapping-based
Classifier

For the bootstrapping-based classifier, we use the
simple high-precision patterns1 for relations used
in the RelationFactory system to learn reliable in-
stances for each slot type. These new instances are
acquired automatically in a bootstrapping process
described in Section 4.2.2. We keep them in the seed
set for each slot/relation type.

We use ReVerb Extractions 1.1 as the main dataset
to acquire more instances given the seed set. ReVerb
(Fader et al., 2011) is a program that automatically
identifies and extracts binary relationships from En-
glish sentences, where the target relations cannot be
specified in advance. It contains a set of (x, r, y)
extraction triples of binary relations, for example,
(bananas, be source of, potassium).

A collection of 15 million high-precision ReVerb

1https://github.com/beroth/
relationfactory/blob/master/resources/
manual_annotation/context_patterns2012.txt

extractions is available for academic use2. ReVerb
Extractions 1.1 dataset is the result of running Re-
Verb on the ClueWeb09 dataset and a portion of
English Wikipedia. The following statistics are the
number of distinct tuples, argument strings, and re-
lation strings in the data set:

• Tuples: 14,728,268.

• Argument Strings: 2,263,915.

• Relation Strings: 664,746.

3 Baseline System

We adopt the RelationFactory system (Roth et al.,
2014) as the baseline system. It includes the can-
didate generation stage and the candidate validation
stage. In the candidate generation stage, documents
relevant to a given query are retrieved by using the
original query name and the query expansion. Then,
a sequence of named-entity tags is predicted for
each retrieved sentence by the NER-tagger. Finally,
sentences that include entities, whose named-entity
types are consistent with the given slot, are passed
to the next stage. In the candidate validation stage,
the RelationFactory system examines whether each
candidate actually realizes the relation or not by us-
ing patterns/rules or machine learning classifiers.

4 System Architecture

Our system architecture are illustrated in Figure 1.
It includes the candidate generation stage, and the
candidate validation stage. We describe each stage
in Section 4.1 and Section 4.2.

4.1 Candidate Generation Stage
As mentioned earlier, we used the RelationFactory
system as the candidate generator. Moreover, we
use GeoLite2, an external geographical dataset, to
filter out noise candidates related to “city”, “sta-
teorprovinces” or “country”. GeoLite2 is a loca-
tion dictionary, which includes country names, sub-
division names and city names. We treat “state-
orprovinces” in the Slot Filling task as the subdi-
vision field in GeoLite2 dataset. In the following
candidate sentence for the “per:country of birth” re-
lation: “Barack Obama was born in Hawaii”, the

2http://reverb.cs.washington.edu

query entity is “Barack Obama” and the potential
slot filler is “Hawaii”. However, “Hawaii” is not in
the country name list, therefore that candidate is in-
appropriate.

4.2 Candidate Validation Stage

For each query in the candidate validation stage, we
combine outputs from two classifiers, namely CNN-
based classifier and bootstrapping-based classifier.

4.2.1 CNN-based Classifier
Piecewise Convolutional Neural Network

(PCNN) (Zeng et al., 2015) is a variation of CNN,
which adopts a piecewise max pooling. In tradi-
tional CNN, max pooling operation is often utilized
to capture the most significant features in each
feature map. Nonetheless, this idea is insufficient
for relation extraction. Piecewise max pooling
operation can get more fine-grained features than
single max pooling operation. In relation extraction,
an input sentence can be divided into three segments
based on positions of entities. Therefore, We use
the PCNN as our relation classifier.

4.2.2 Bootstrapping-based Classifier
We consider slots in the Slot Filling task as pat-

terns (or relations), and entities as instances in
the binary relation extraction task, then we use
Espresso+Word2vec system introduced by Phi and
Matsumoto (2016) to induce more reliable pairs of
entities for each type of slot. For the part-whole re-
lation extraction task that deals with 8 fine-grained
subtypes, the Espresso+Word2vec system achieved
a precision of 84.9% for harvesting instances, and
outperformed the original Espresso system (Pantel
and Pennacchiotti, 2006). The Espresso+Word2vec
system utilizes an additional ranker component,
namely Similarity Ranker, which uses embedding
offset information between instance pairs of specific
relations. For each new instance, that ranker cal-
culates the average similarity score between this in-
stance and initial instances in the seed set. The sim-
ilarity score of an instance i,SIM(i), is defined as:

SIM(i) =

∑
j∈IPrevious

Cos sim(i, j)

|IPrevious|
where Cos sim(i, j) is the cosine similarity be-

tween two instances, and IPrevious are instances in
the seed set.

Figure 1: Our overall architecture for the Slot Filling task

Finally, instances are ranked by their similarity
score to old instances. The bootstrapping-based
classifier discards all but the top-k instances as the
return results.

5 Experimental Results and Discussion

5.1 Submitted Runs

We show experimental results on the test set in terms
of LDC-MAX-micro in Table 1. Our submitted runs
are characterized as follows:

Run1 (Recall): We deal with both hop0 and hop1
queries without filtering step.

Run2 (Fast): We deal only with hop0 queries.

Run3 (Precision): Similar to Run1, however, we
remove candidates that have confidence scores
below our threshold (0.55) for hop1 queries.

For Run3, our precision/recall/F1 scores for hop1
queries are zero because of the high threshold. In
terms of run1, the recall for hop1 queries are higher
than 0.09. On the contrary, the precision for hop1
queries are less than 0.01, since we did not filter
any candidates. This causes lower precisions for all
queries in other runs.

5.2 Results for Development Set
We also evaluated our system on the development
set (a dataset for TAC-KBP 2013 English Slot Fill-
ing task). Because of time constraints, we could
not conduct experiments for the combination of two
classifiers. Thus, we conducted experiments only
for the CNN-based classifier. We show our exper-
imental results and the results for the baseline sys-
tem(RelationFactory) in Table 23.

The system we evaluated are:

System (Recall): We removed candidates for
queries that have confidence scores below our
threshold (0.01) to get the high recall.

System (Precision): We removed candidates for
queries that have confidence scores below our
threshold (0.6) to get the high precision.

6 Conclusion

This year, we participated in the English Slot Fill-
ing task in TAC-KBP 2016. Our system consists of
a candidate generation stage and a candidate vali-
dation stage. In the candidate generation stage, we

3As you can see, the F1 score of our system is much lower
than the F1 score of the baseline system. By checking our
implementation after the submission, we found that our CNN
based classifier had a small bug.

Hop0 Hop1 All
Run ID Precision Recall F1 Precision Recall F1 Precision Recall F1

Run1 0.0868 0.0376 0.0525 0.0032 0.0974 0.0061 0.0054 0.0576 0.0099
Run2 0.0858 0.0376 0.0523 0.0000 0.0000 0.0000 0.0858 0.0250 0.0387
Run3 0.0861 0.0376 0.0523 0.0000 0.0000 0.0000 0.0801 0.0250 0.0381

Table 1: Experimental results on the test set in terms of LDC-MAX-micro

System Precision Recall F1
Our system(Recall) 0.1213 0.0643 0.0840
Our system(Precision) 0.1430 0.0589 0.0834
Baseline(RelationFactory) 0.3276 0.4513 0.3796

Table 2: Experimental results on the development set (official score)

retrieve documents relevant to a given query and se-
lect candidates based on the RelationFactory sys-
tem. In the candidate validation stage, we combine
results from 2 classifiers, namely CNN-based and
bootstrapping-based classifiers. In the future work,
we plan to train one CNN-based binary classifier for
each kind of relation instead of our current multi-
class classifier. This could lead the performance gain
for relation classification task. Second, we would
like to examine the performance when combining
the bootstrapping-based classifier and CNN-based
classifier on the development set. Finally, we would
like to explore the better way to combine our two
classifiers.

References
Benjamin Roth, Tassilo Barth, Michael Wiegand, Mit-

tul Singh, and Dietrich Klakow. 2014. Effective slot
filling based on shallow distant supervision methods.,
volume 1. arXiv preprint arXiv:1401.1158.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. Proceedings
of EMNLP.

Fader, Anthony, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. Proceedings of the Conference on Empirical
Methods in Natural Language Processing. Association
for Computational Linguistics.

Pantel, Patrick, and Marco Pennacchiotti. 2006.
Espresso: Leveraging generic patterns for automat-
ically harvesting semantic relations. Proceedings of
the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the ACL.

Van-Thuy Phi, and Yuji Matsumoto. 2016. Integrating
Word Embedding Offsets into the Espresso System for
Part-Whole Relation Extraction Proceedings of The
30th Pacific Asia Conference on Language, Informa-
tion and Computation (PACLIC).

