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Abstract

In this paper, we describe our system for
TAC KBP 2016 Event Argument Extrac-
tion and Linking task. Unlike traditional
approaches which usually use sequential
pipelines, our system utilizes a joint event
extraction method predicting event trig-
gers and arguments together. And besides
common natural language features (e.g.,
POS tags), we also make use of promising
distributed representations of words and
transform these representations into sparse
vectors through sparse coding. Experi-
mental results indicate that our joint event
extraction model using both common fea-
tures and sparse vectors performs better.

1 Introduction

Event extraction is important to many machine
learning applications, such as information re-
trieval, machine reading systems or news summa-
rization. Typical event extraction task focus on
discovering event triggers with specific types and
their arguments. Most state-of-the-art systems ex-
tract events and entities in separate stages: trigger
identification/classification and argument identifi-
cation/classification, as a result of which these sys-
tems usually fail to correct errors in upstream de-
spite more info is obtained in downstream.

In our system, we adopt a joint event extraction
method proposed by (Li et al., 2013). In order
to capture the dependencies between triggers and
argument as well as explore global features over
multiple local predictions, the method formulates
event extraction as a structure learning problem
and extracts event triggers and arguments simul-
taneously on sentence level. It uses structured per-
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ceptron with early-update to train the joint model
and beam search when decoding.

Besides commonly used linguistic features
such as lemma, synonyms and POS tagging,
we also introduce distributed representations of
words (Mikolov et al., 2013) which recently
have been shown to benefit NLP tasks like pars-
ing (Bansal et al., 2014), named entity recogni-
tion (Guo et al., 2014) and sentiment analysis. One
major problem what distributed word representa-
tions brings is that they are dense and uninter-
pretable. A method proposed in (Faruqui et al.,
2015) transforms any distributed representations
of words into sparse vectors through sparse cod-
ing, and sparse vectors can then be transformed
into binary vectors.

The remainder of the paper is organized as fol-
lows. In Section 2, we describe our event argu-
ment extraction and linking system in more de-
tails. In Section 3, we show some experimental
results with our system and our performance in
the official TAC KBP 2016 evaluations. Finally,
in Section 4, we draw our conclusions on the sys-
tem.

2 System Description

2.1 Overview

Our system begins with a entity detection mod-
ule(e.g., Java Extraction Toolkit) that takes raw
text as input, and produces named entities within
documents in ACE annotation format. These raw
documents are also fed into a processing module
which runs a suite of tools to extract linguistic fea-
tures. The processed data is then used as training
data for our joint event extraction model, which
outputs event mentions and arguments predictions.
The output mentions/arguments are also annotated
in ACE format, and subsequently fed into a post-
processing module which links event arguments



into groups and transforms the result into Event
Argument Extraction and Linking task output.

2.2 Preprocessing
We begin by extracting named entities and lin-
guistic features from raw documents. In our sys-
tem, named entity mentions and their coreference
links are extracted by running the Java Extraction
Toolkit (JET) (Grishman et al., 2005), addition-
ally we also use Stanford Named Entity Recog-
nizer to generate entities and entity annotation out-
puts from Entity Detection and Linking task. Then
we run Stanford CoreNLP toolkit (Manning et al.,
2014) on raw text to get sentence tokenization,
lemmatization, part-of-speech tagging, and depen-
dency parsing annotations, which are used down-
stream as features.

2.3 Sparse Coding
Besides features such as lemma and POS tag-
ging mentioned previously, we also introduce
distributed representations of words (Mikolov et
al., 2013). Sparse coding method proposed
by(Faruqui et al., 2015) transforms distributed
word representations into sparse vectors, which
can then be transformed into binary vectors. And
we take these binary vectors as sparse features
for the joint event extraction model. First, using
word2vec code1, we train word vectors upon ACE
2005, New York Times news data, and past TAC
KBP Event track training corpus. Then these word
vectors are fed into sparse coding model2 to gen-
erate corresponding sparse vectors.

2.4 Joint Event Extraction
Given the preprocessed data, we train a joint event
extraction model which predicts event triggers and
arguments within sentences simultaneously, and
code can be found on github3. Trigger types and
argument roles are based on RichERE ontology.

Raw training documents are split into sentences,
and then tokenized into tokens. To train the joint
structured perceptron model, for each token we
use a variety of features including:

• the current token/lemma

• bigrams of the current token/lemma with
words/lemmas within a fixed context window

1https://code.google.com/archive/p/word2vec/
2https://github.com/mfaruqui/sparse-coding
3https://github.com/oferbr/BIU-RPI-Event-Extraction-

Project

• part-of-speech tag for the current token

• dependent/governor information from depen-
dency parsing

• nomlex base from noun and WordNet syn-
onyms

• brown cluster for the current token

• possible or nearest entity information for the
current token

• sparse binary vector of current token

There are also global features extracted as de-
scribed by(Li et al., 2013). The structured percep-
tron classifier takes each sentence as a training in-
stance, and first enumerates each token within the
sentence as trigger word, then takes extracted en-
tities within the sentence as event argument can-
didates and assigns all possible argument roles
to each candidate. Such assignments are called
configuration, and features for each configuration
are represented by extracted token features of sen-
tence and argument role assignment relation. Con-
figuration score is computed according to(Li et al.,
2013), and configuration with higher score is bet-
ter.

Some simple rules are also used to assist the
joint event extraction procedure based on observa-
tions upon corpus of event task. Take Attack event
as an example, common trigger words of this kind
of events are attack, bombing, fight, invasion, war,
incursion and so on.

3 Evaluations

We use ACE 2005 and DEFT Rich ERE English
Training Annotation V2 as our training corpus.
For evaluation purpose, ACE 2005 corpus are split
into train/development set as described in (Li et
al., 2013), and DEFT Rich ERE English Training
Annotation V2 as a whole training corpus. Both
model trained on these two corpus are evaluated
on TAC KBP 2016 English Event Argument Link-
ing Pilot Gold Standard corpus.

Following past work on event extraction, we re-
port results on micro-averaged precision, recall,
and F1 measurements. In order to show the ef-
fectiveness of sparse coding vectors of words, we
evaluate two forms of our model, one with sparse
vectors used and the other without. Results are
provided in Table 1.



Model ArgPrecision ArgRecall ArgF1
sturctured perceptron 0.313 0.049 0.0847

sturctured perceptron+spase coding 0.189 0.066 0.097

Table 1: Effectiveness of Sparse Coding.

We only train our model upon English news or
discussion form documents, so we only report re-
sults on English corpus. For the released 30k En-
glish documents within all evaluation corpus, we
need to train another word vectors including words
from these documents and then generate sparse
vectors. Consequently, we also rebuild structured
perceptron model on these new sparse vectors. Re-
sults on these official corpus are provided in Table
2.

System ArgP ArgR ArgF1
ijk3 0.052 0.087 0.030

Table 2: Offical results.

4 Conclusions

In this paper, we summarized our system for TAC
KBP 2016 Event Extraction and Linking task. Our
system utilizes a joint event extraction method
based on structured perceptron predicting event
triggers and arguments together. The structured
perceptron takes both classic linguistic features
like lemma or POS tagging and distributed repre-
sentation of words transformed into sparse vectors
through sparse coding. Our experimental results
show that distributed representation of words ben-
efit our event extraction task.
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