The lilian Cold Start System for TAC 2016

Yuncong Wu
Lilianinfo.com / Floor 3, Building E, ShangDaGuoli,
3100 HuTai Road, Baoshan, Shanghai

chinsnlia@gmail.com

Abstract

This paper describes the full pipeline KBP
system implemented by lilianinfo.com for the
TAC KBP 2016. In TAC KBP 2016, lilian-
info.com participated in one track: Cold Start
Track and focused on English Cold Start KB
Construction tasks. Our pipeline is based on
RelationFactory, which include 4 parts : pre-
processing, candidate generation, candidate
validation and post-processing. In candidate
validation part, besides the pattern and SVM
model provided by RelationFactory, we pro-
pose a simple fuzzy match to improve the val-
idation performance and show a considerable
improvement in the final result.

1 Introduction

Knowledge Base (KB) plays an important role in
many aspects (e.g., Al, Intelligent Q&A System).
But it’s difficult and inefficient to extract informa-
tion from open-source data to construct or populate
a Knowledge Base system. Hence, automatically
Knowledge Base Population (KBP) was proposed.
The goal of TAC KBP 2016 is to develop and evalu-
ate technologies.

The Cold Start KBP track in TAC KBP 2016,
which we participated, requires us to build up a
Knowledge Base with given scheme and texts come
from newswire and multi-post discussion forums.
It’s multi-lingual, but the system we perform only
supports English.

The system we perform is a pipelined system,
which contains four parts: preprocessing; candidate
generation; candidate validation; postprocessing.

Our system is mostly based on RelationFactory!
(Roth et al. ,2014), which contains distantly super-
vised classifiers (SVM) and patterns.

But traditional pattern-based relation extractors
suffer from low recall (Angeli et al. ,2015). To
improve the recall, New York University implied a
fuzzy match in KBP 2015’s system (He and Grish-
man ,2015), which can be treated as an impressive
and effective tech.

It’s also a tough work to summarize patterns from
texts, which may require a large number of linguis-
tics knowledge and many human resources. The Re-
lationFactory shows us a new thought : they use dis-
tant supervision to extract some “raw’ patterns and
calculate a score for each “raw” pattern based on
the frequency of the pattern. Finally, they manually
summarize patterns from high score “raw” patterns
and use the manually crafted pattern to extract re-
lation. However, the manually crafted patterns get
a low recall (about 6.8%) in high score “raw” pat-
terns (i.e., “raw” patterns with a score higher than
0.95, with a maximum of 1). It shows that a manu-
ally crafted pattern can’t make full use of the “raw”
patterns.

But the “raw” patterns suffer from a terrible low
recall. It’s inefficient to extract information from
them directly. So, we combining the thoughts from
NYU and RelationFactory and come up with a strat-
egy to make full use of the “raw” patterns. We use
a fuzzy match to match the patterns. The NYU
use an edit-distance-based algorithm to fuzzy the
dependency path, which may only consider syntac-
tic information in the sentence, but lost the seman-

"https://github.com/beroth/relationFactory

tics information (e.g., since “Chinese” and “Ger-
man” are both nationality, hence, “PER, a Chinese
per:title” may match the sentence like “PER, a Ger-
man per:title”). It has been shown that word2vec
(Mikolov et al. ,2013) done well in word embed-
ding. So we perform a simple algorithm to do the
fuzzy match based on word2vec.

The rest of paper is organized as follows. We first
present our system in section 2 with detail descrip-
tions of each module in system pipeline. Then sec-
tion 3 shows the performance of the system on TAC
2016 KBP datasets in different aspects. Finally, in
section 4, we draws some conclusions.

2 System Description

Figure 1 shows the overall architecture of our
TAC KBP 2016 Cold Start system. In the first part,
we process on the corpus and collect all needed in-
formation about entities and slot values. To extract
slot values which type are string from corpus, we
define 7 extra kind of entities, which is showed in
tabular 2 and extract them with patterns.

Then the candidate generation part performed.
This part will extract all possible (entity, slot, rela-
tion) tuple considering their type and distance. Only
the closest entities with the corresponding type will
be retrieved.

Then the third part comes. we use the model
provided by RelationFactory to valid the candidates,
which include an SVM model trained by distant su-
pervision and distantly supervised pattern. Then we
perform a fuzzy match to do further extraction.

The preprocessing part can be mainly divided into
two parts: cross-document coreference and predic-
tion combining. Then we can use the validated tu-
ple (entity, slot, relation) to build up the Knowledge
Base.

The detail description of all components in the
pipeline is followed.

2.1 Preprocessing Corpus

2.1.1 extract posters/authors name & remove
message in tag

We found that the posters and authors’ name
should be taken account as PER type mentions. But
it’s difficult for NER toolkit to detect them. So we
perform a regex to extract their names. Besides, we

Preprocesss

Postname

New Types
LI Extraction

Extraction

Candidate Generation

Y

Candidate Validation

Fuzzy-match

it Pattern

Pattern

¥

Postprocess

Slot Values
Consolidating

Inverse Relations
Population

Cross—document
Coreference

Figure 1: Architecture of the system

find that the information in tag is mostly uselessly,
but may do harm to the NER toolkit, so we remove
all message in the text and simply replace them with
equivalent space.

2.1.2 Named Entities Recognition

In KBP 2016, participators are required to per-
form a system which finds all names or nominal
mentions of specific, individual PER, ORG, GPE,
LOC, and FAC entities in the corpus. Our system
use MITIE? to do the NER, only score higher than
0.3 will be considered as an entity. It can only sup-
port PER, LOC, and ORG 3 types, and fails to find
NOM.

The MITIE may mistake some number or punctu-
ation as part of the entities, so we remove all punc-
tuation at the begins and ends of each entity, remove
all one-character entities, and remove entity without
any alphabet.

2.1.3 Dates Extraction

There are may kinds of dates information in the
corpus, some are absolute (e.g., “August 17, 19267,
“1926-7, “08/17/1926”), some are relative (e.g., “a

*https://github.com/mit-nlp/MITIE

Type Coressponding slots
org:date_dissolved

org:date_founded

Date per:date_of_birth
per:date_of_death
org:number_of_employees_members

Number per-age
Job per:title
Religion org:political religious_affiliation
Url org:website
CauseDeath per:cause_of_death
Charges per:charges

Table 1: The new-defined type and their coresspond-
ing slot. Note that, there are some string slots can
be filled with the surface of a entity metion, like
per{org}:alternate_names and per:origin, so it’s unneces-
sary to define a new type.

LR N3 99 ¢

week from today”, “last year”, “two weeks before
last Monday”). We extract both of them by patterns.
We use the document date as the current day to cal-
culate the relative dates, and calculate partly (e.g.,
for those like “90 years ago”, we will only take years
into account, and produce XX/XX/1926).

2.1.4 GPE Extraction

The GPE can be divided into 4 levels: nationality,
country, province and city.

We use GeoText?, whose raw data extracted from
geoname” to extract cities from text. The amount
of all cities a large number, so only whose popula-
tion more than 15,000 are taken into account. Some
cities with strange name (e.g., “Same”, “Univer-
sity””) are removed manually.

The number of nationalities, countries and
provinces is much smaller and has more alternate
names, so, use GeoText may suffer from low recall.
Hence, we grab all nationalities/countries name and
their alternate name from wikidata® and use a regex
to extract them.

3https://github.com/elyase/geotext
*“http://www.geonames.org/
>https://www.wikidata.org/

2.1.5 Religions/Party/Jobs/Charges/CauseDeath
Extraction

We use wikidata to collect all jobs/parties’ name
and use a regex to extract them.

The religions/charge/causedeath was extract by
regex, using a proper word list from RelationFac-

tory.
2.1.6 URL Extraction

Use urlextractor® to extract all url in the corpus.

2.1.7 Number Extraction

We first use regex to extract all word with num-
ber, i.e., words constructed by numeric word, and
use semantic’ to valid the number. All valided num-
ber will be retrieved.

2.2 Candidate Generation

This candidate generation should generation all
possible (entity, slot, relation) tuple and retrieve
their sentence for validation and provenance pro-
vided. It’s obviously that neighbor entities are more
likely to be related, so we assume only the closest
entities with the corresponding type will be a can-
didate of (entity, slot, relation) tuple. Hence, we
retrieve candidates for each sentence base on their
types and positions.

2.3 Candidate Validation

2.3.1 SVM Model

The model is provided by RelationFactory, which
uses Freebase® for distant supervision. The model
takes only two features into account : the n-gram
feature and sparse (or skip) n-grams feature.

2.3.2 Hand-Crafted Pattern

We used the set of prespecified rules from the Re-
lationFactory relation extraction system to extract
relation.

2.3.3 Fuzzy Match Pattern

We use spaCy’ for word embedding. Two sen-
tence’s relative rate are defined like this:

min
for i in wl,, w2y,

diss(sl,s2) = disy (wl;, w2;)
Shttps://github.com/lipoja/URLExtract
"https://github.com/crm4 16/semantic
8https://www.freebase.org
*https://spacy.io/

s1, s2 represent the sentence to be compared,
wl,, w2, are represented the word sequences for
the two sentence. dis,, means the semantic distance
between the words, which is calculated by spaCly.

But, there is still a problem in the definition of
wl,, and w2,. A strictly matching may compare the
sentence word by word, which may fail in some em-
barrassing situations. For instance, ‘“Unite States”
may be close to word “China”, but word “Unite” will
fail to match “China”. To avoid these mismatching,
we use a dynamic programming algorithm to do the
fuzzy match.

The algorithm is shown in algorithm 1. ¢1,¢2 is
the tokens sequence of s1, s2, tokenized by split the
sentence with space. n, m is the length of t1,¢2, ¢tr
is a threshold to limit the length of a word (set as 2
in our system). F; ; stands for the maximum relative
rate between the first i tokens in sl and the first j
tokens in s2. So Fj, ,, is the relative rate between the
sentence. Each time, we choose continuous tokens
to form a word, which is £1y;,12; ;, calculate the
relative rate if we chose the word in this way, then
relax F; ;.

The complexity of algorithm 1 is O(nmtr?),
which may cause a hard run by comparing millions
of candidates and ten thousand of patterns . We find
that most of the candidates fail to match the patterns
in the first word. But the algorithm continues cal-
culating the relative rate even though the match has
failed. To cut off the calculation in failed match, we
implied an algorithm, using a double queue to con-
sider the matched word set only.

The new algorithm is shown in algorithm 2. @) is
a double queue, storing the available matches for up-
dating other matches. In each iteration, we pick up
an available match ¢, j and try to expand it by match-
ing a new word-pair (t1; x,t2;; in algorithm 2), and
relax Fj,; by this match. If the relaxed matching is
an available matching, i.e. the new relative rate is
higher than threshold 7" (set as 0.75 in our system),
and k, [is not in the updating queue (), we push the
new matching into the queue. This algorithm can be
further optimized by using SLF (Smart Label First)
and LLL (Large Label Last). But in this case, the
update frequency is very small, so using an original
version could get better performance.

Algorithm 1

1: F070 = inf

2: fori < 1,ndo

3: for j + 1,m do

4: fork < i—tr+1,ido

5: for/ < j—tr+1,j5do
6: Fi’j = ma:r(Fm,

7: min(Fk_l’l_l, disw(t1k7i,t217j))
8: end for

9: end for

10: end for

11: end for

2.4 Postprocessing

2.4.1 Cross-document Coreference

All the components performed before are in
mention-levels, i.e., they only consider the surface
form and textual context. To construct a Knowl-
edge Base, we need to cluster the mention into entity
node.

Clustering by wiki’s “also known as”.For type
like GPE, which is completely extracted from a
gazetteer. We cluster them by wikidata’s “also
known as” label.

Two-stage string similarity clustering.For PER,
LOC, ORG. Intuitively, similar names are likely to
refer to the same named entity. Hence, we perform
a two-stage clustering algorithm, which mainly con-
sider the mention’s surface.

We use the method like Lodie’s system in
TAC2015 (Gao et al. ,2015) to compute string simi-
larity: we use different measures for different named
entity types: the Levenshtein distance (LD) (normal-
ized by maximum length) for ORG and GPE; and
the Jaro-Winkler (JW) distance (normalized by the
longest common prefix) for PER.

To speed up the clustering, we use the algorithm
as Lodie performed in TAC2015 to do the clustering.

The algorithm contains many rounds. First, all
mention are in the “remaining pool”. In each round,
a mention in the remaining pool is chosen randomly
as the central of a new cluster. Then for every
other mention in the “remaining pool”, we compute
a string similarity score between them. All men-
tion whose score passes a threshold 7' (set as 0.9
in our system), are added to this new cluster and

Algorithm 2
1: F070 = inf
2: Q<+ (1,1)
3: while Q # () do

4: i,j < pophead(Q)

5: for k< i,i+tr —1do

6: for! < j,j+1ir—1do

7: tmp < min(disy (t1; g, t2;5),
8: Fi_1j-1)

9: if I}, ; < tmp then
10: Fj;, =tmp
11: ika,l > T then

12: if &, [not in () then
13: Q.pushtail(k,1)
14: end if
15: end if
16: end if

17: end for
18: end for

19: end while

removed from remaining pool. The complexity to
generate the first cluster in this algorithm is O(n),
which n stands for the total number of name men-
tions of a given type. But the following clustering
will speed up, because the size of remaining pool
can be reduced gradually during the processing, and
finally lead to a complexity about O((n/k)?), where
k refers to the threshold T, means the average size of
a cluster, the higher the threshold set, the smaller the
k we have (about 8 when T =0.9).

However, the first stage of clustering often pro-
duces an over-cluster result, so we perform a second
stage clustering.

For each cluster, we want to divide them into
many smaller parts, which size cannot be larger than
10 percent of the origin clusters. We use the same
algorithm as the first stage to do this.

2.4.2 Inverses Relations

For each validated candidate, we add their inverse
relations as a new candidate. Finally, all validated
candidates were sent to a consolidating process.

2.4.3 Consolidating Slot Values

Slot value consolidation involves selecting the
best value in the case of a single-valued slot (e.g.,
per:date_of_birth), and the best set of values for

slots that can have more than one value (e.g.,
per:children). All unreasonable candidates are first
removed (e.g., a PER whose per:age slot is 1000).
For the single-valued slot, we simply pick the slot
value with the highest score (calculated from SVM
and relative rate). For the multi-valued slot, we use
a strategy like HLTCOE (Finin et al. ,2013). We as-
sociate two thresholds for the number of values that
are selected the first 7’1 represents a number that is
suspiciously large and the second 72 is an absolute
limit on the number of values reported. Table 2.4.3
shows the thresholds we used for selecting. We first
rank all candidates by their score, the first T'1 can-
didates are selected directly. The rest 7'2 — T'1 can-
didates are picked iff their score are higher than a
threshold 7°3 (0.2 in our system).

relation T1 | T2
org:alternate_names 25 | 30
org:founded_by 25 | 30
org:member_of 18 | 22
org:members 25 | 30
org:parents 5 5
org:political religious_affiliation 5 110
org:shareholders 25 | 30
org:subsidiaries 25 | 30
org:top_members_employees 8 | 10
per:alternate_names 25 | 30
per:charges 5 |10
per:children* 8 | 10
per:religion* 2 3
per:cities_of _residence 7 12
per:countries_of_residence* 5 7
per:employee_or_member_of* 18 | 22
per:origin 2 3
per:other_family 17 | 20
per:parents* 5 5
per:schools_attended* 4 7
per:siblings* 9 | 12
per:spouse* 3 8
per:statesorprovinces_of_residence | 6 8
per:title 5 8

Table 2: The number of values for some multi-valued
slots are limited by two thresholds, relations with aster-
isks are refered to HLTCOE’s TAC2015 system.

3 Result

Lilian submitted three runs to the CS KB task.
These submissions are meant to estimate the perfor-

Table 3: Entity Discovery Result

strong_mention_match | strong_typed_metion_match mention_ceaf b_cubed
P R F1 P R Fl1 P R F1 P R Fl1
0.854 0.558 0.675 | 0.766 0.500 0.605 0.718 0.469 0.567 | 0.803 0.347 0.484
Table 4: Slot Filling Result
RunID | hop0_P hop0_R hop0_F1 | hopl P hopl R hopl F1 | All.LP All.R All_Fl
lilian1 | 0.1935 0.0225 0.0403 0 0 0 0.1765 0.0149 0.0275
lilian2 | 0.2647 0.0225 0.0414 0 0 0 0.2535 0.0149 0.0281
lilian3 | 0.2881 0.0212 0.0395 0 0 0 0.2742 0.0141 0.0268
mance of fuzzy pattern match. References

A summary of three submissions is given below. Gabor Angeli, Victor Zhong, Dangi Chen, Arun Cha-

ganty, Jason Bolton, Melvin Johnson Premkumar,
Panupong Pasupat, Sonal Gupta, and Christopher D
Manning. 2015. Bootstrapped self training for knowl-
edge base population. In Proc. Text Analysis Confer-
ence (TAC 2015).

Lilian1l A system combines SVM model and pat-
tern provided by RelationFactory and fuzzy
pattern match.

Lilian2 A high precision system with a higher

threshold (set T as 0.8 and T3 as 0.3). A system
combines the SVM model and pattern provided
by RelationFactory and fuzzy pattern match.

Lilian3 A system only includes SVM model and
pattern provided by RelationFactory.

We use the same ED result for each run. The result

of ED is showed in table 3, while the result of SF is

showed in table 4.

It should be mentioned that we do not carry out

Tim Finin, Dawn Lawrie, Paul McNamee, James May-
field, Doug Oard, Nanyun Peng, Ning Gao, Yiu-Chang
Lin, Joshi MacKin, and Tim Dowd. 2013. Hltcoe
participation in tac kbp 2015: Cold start and tedl. In
Eighth Text Analysis Conference, volume 22, page 2.
NIST.

J Gao, Z Zhang, and AL Gentile. 2015. The lodie team
(university of sheffield) participation at the tac2015
entity discovery task of the cold start kbp track. In
Proceedings of the 2015 Text Analysis Conference.
Sheffield.

Yifan He and Ralph Grishman. 2015. The nyu cold start

the hop-1 typed cold start knowledge base construc-
tion because we do not keep the extraction of knowl-
edge from the obtained facts.

From these results, we can conclude that a fuzzy
pattern match algorithm can help to improve the per-
formance of a CS KB system. A higher threshold
should be set in our system since high threshold
doesn’t cause any decrease in recall while increas-
ing the precision.

system for tac 2015.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Benjamin Roth, Tassilo Barth, Grzegorz Chrupala, Mar-
tin Gropp, Dietrich Klakow, Shuly Wintner, Sharon
Goldwater, and Stefan Rielzler. 2014. Relationfac-
tory: A fast, modular and effective system for knowl-
edge base population. In EACL, pages 8§9-92.

4 Conclusions

In this paper, we present the system for the
Cold Start Track of the KBP 2016. The proposed
system contains preprocessing, preprocessing, can-
didate generation, candidate validation and post-
processing. We provide a fuzzy pattern match al-
gorithm and it’s proved to increase the performance
of our system at this task.

