New York University 2016 System for KBP Event Nugget: A Deep Learning Approach

Thien Huu Nguyen, Adam Meyers and Ralph Grishman Computer Science Department, New York University

Event Nugget

Three major subtasks:

- Event Detection and Classification
- Event Realis Classification
- Event Coreference Resolution

.

Hundreds of people have been rescued after the eight-story building in Savar on the outskirts of the Bangladeshi capital Dhaka collapsed on Wednesday morning, leaving at least 83 people dead and over six hundred injured.

Officials say nearly 700 people have been rushed to the hospitals. Doctors said the death toll could rise as some of those injured are in critical condition

Event Detection and Classification

Hundreds of people have been rescued after the eight-story building in Savar on the outskirts of the Bangladeshi capital Dhaka collapsed on Wednesday morning, leaving at least 83 people <u>dead</u> and over six hundred <u>injured</u>.

Contact_Contact Movement_Transport-Person

Officials <u>say</u> nearly 700 people have been <u>rushed</u> to the hospitals. Doctors said the death toll could rise as some of those <u>injured</u> are in critical condition

Life Die

Event Realis Classification (i.e, Actual, Generic or Other)

Hundreds of people have been rescued after the eight-story building in Savar on the outskirts of the Bangladeshi capital Dhaka collapsed on Wednesday morning, leaving at least 83 people <u>dead</u> and over six hundred <u>injured</u>.

..... Life_Injure (Actual)

Life_Die (Actual)

Contact_Contact (Actual) Movement_Transport-Person (Actual) Officials <u>say</u> nearly 700 people have been <u>rushed</u> to the hospitals. Doctors said the death toll could rise as some of those <u>injured</u> are in critical condition

Life_Injure (Actual)

Event Coreference Resolution

Hundreds of people have been rescued after the eight-story building in Savar on the outskirts of the Bangladeshi capital Dhaka collapsed on Wednesday morning, leaving at least 83 people <u>dead</u> and over six hundred <u>injured</u>.

.... Life_Injure (Actual)

Life_Die (Actual)

Contact_Contact (Actual) Movement_Transport-Person (Actual) Officials <u>say</u> nearly 700 people have been <u>rushed</u> to the hospitals. Doctors said the death toll could rise as some of those <u>injured</u> are in critical condition

Corefer

Life_Injure (Actual)

NYU 2016 Event Nugget System

- Preprocessing includes: sentence detection, tokenization, dependency parsing
- All modules are based on neural network models

Event Detection with Neural Network

₩ Ī

Previous Work on Event Detection with Neural Network

Convolutional Neural Networks (CNN) (Nguyen and Grishman, 2015)

Previous Work on Event Detection with Neural Network

Combination of convolution neural networks and bidirectional recurrent neural networks (CNN+BRNN) (Feng et al., 2016)

Issue of the traditional CNN

Non-consecutive Patterns:

The mystery is that she took the *job* in the first place or didn't *leave* earlier.

→non-consecutive convolutional neural networks (NCNN)

Non-consecutive convolutional neural networks (NCNN)

event mention with input sentence and current token for classification

Non-consecutive convolutional neural networks (NCNN)

event mention with input sentence and current token for classification

Non-consecutive convolutional neural networks (NCNN)

Methods	F
Sentence-level in Hong et al (2011)	59.7
MaxEnt (Li et al., 2013)	65.9
Joint+Local (Li et al., 2013)	65.7
Joint+Local+Global (Li et al., 2013)	67.5
Cross-entity in Hong et al. (2011) †	68.3
Probabilistic soft logic (Liu et al., 2016) †	69.4
CNN (Nguyen and Grishman, 2015b)	69.0
DM-CNN (Chen et al., 2015)	69.1
B-RNN (Nguyen et al., 2016a)	69.3
NC-CNN	71.3

Event Detection Performance on ACE

Event Realis Classification

₩ Ţ

Event Realis Classification

Training the same NCNN model to classify for 3 Realis types (i.e, GENERIC, ACTUAL and OTHER)

Examining some in-house modality features for event realis extracted from the GLARF semantic parser, i.e:

- Scope of operator words, including quantifier (i.e, every, some etc.), verbs licensing belief contexts (i.e, believe, assume etc.), epistemic adverbs, adjectives (i.e, possibly, maybe etc.), negation words (i.e, not, no, deny, refuse etc.) etc
- Morphological features
- Attribution
- Manual rules (to predict a more fine-grained set of realis-like distinctions like ACE)

Event Realis Classification

() Ī

Event Coreference Resolution

- A binary classification task for every event mention pair in a document (i.e, whether two event mentions in a document corefer or not)
- Two event mentions corefer if their contexts are similar, and their subtypes and realis match

Event Coreference Resolution

NYU Event Nugget Submissions

Runs	Components				
	typeEN	realisEN	corefEN		
NYU1	NCNN	NCNN	NCNN		
NYU2	NCNN	NCNN	NCNN		
		+ Modality Features			
NYU3	NCNN+BRNN	NCNN+BRNN	NCNN+BRNN		

Table 1: Models and features for different runs of NYU.

Experiments

Training data for official submissions

- The training data for the Event Nugget 2015 evaluation
- The DEFT Rich ERE English Training Annotation Dataset
- Haft of the evaluation data for the Event Nugget 2015 evaluation (102 documents)

Development data:

The remaining documents in the 2015 evaluation data (100 documents)

Experiment Results

System	Plain	Туре	Realis	Туре	Coref
				& Realis	score
NYU1	71.07	62.72	56.12	49.70	43.14
NYU2	71.16	62.65	57.41	50.43	43.40
NYU3	70.03	62.38	55.62	49.86	43.94

Table 2: Performance of NYU1, NYU2 and NYU3 on the development data.

Experiment Results

System	Plain	Туре	Realis	Type & Realis	Coreference
NYU1	53.84	44.37	42.68	35.24	27.07
NYU2	52.39	44.12	41.73	35.22	26.28
NYU3	54.07	44.38	41.19	33.60	26.94
Top site	54.59	46.99	39.78	33.58	30.08

Performance of NYU1, NYU2 and NYU3 on the 2016 official evaluation data for English

Experiment Results

System	Plain	Туре	Realis	Туре	Coref
				& Realis	score
NYU1	67.77	59.74	53.82	47.26	40.11
Top 1 in 2015	60.77	57.18	40.35	38.06	39.12
Top 2 in 2015	62.13	57.41	47.85	43.73	37.23
Top 3 in 2015	64.56	57.45	45.21	39.67	32.36

Table 4: Performance comparison of NYU1 and the best systems in the 2015 event nugget evaluation.

Conclusions

- Develop an Event Nugget system based on neural networks for the three subtasks: event detection and classification, event realis classification and event coreference resolution
- Automatically extracts features from inputs
- Although the system is pretty simple, it works pretty well

THANK YOU!

