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Event Nugget

@ Three major subtasks:
» Event Detection and Classification
» Event Realis Classification
» Event Coreference Resolution
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Event Nugget: Input

Hundreds of people have been rescued after the eight-story building in
Savar on the outskirts of the Bangladeshi capital Dhaka collapsed on
Wednesday morning, leaving at least 83 people dead and over six
hundred injured.

Officials say nearly 700 people have been rushed to the hospitals.
Doctors said the death toll could rise as some of those injured are in
critical condition
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Event Detection and Classification

Hundreds of people have been rescued after the eight-story building in
Savar on the outskirts of the Bangladeshi capital Dhaka collapsed on
Wednesday morning, leaving at least 83 people dead and over six

hundred injured. i
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Officials say nearly 700 people have been rushed to the hospitals.
Doctors said the death toll could rise as some of those injured are in
critical condition
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Event Coreference Resolution

Hundreds of people have been rescued after the eight-story building in
Savar on the outskirts of the Bangladeshi capital Dhaka collapsed on
Wednesday morning, leaving at least 83 people dead and over six
hundred injured. i
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NYU 2016 Event Nugget System
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@ Preprocessing includes:
sentence detection,
tokenization, dependency
parsing

& All modules are based on
neural network models
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Event Detection with Neural Network
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Previous Work on Event Detection

with Neural Network

input sentence with marked trigger candidate

A police officer was <anchor=killed</anchor= in New Jersey today
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Previous Work on Event Detection

with Neural Network
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Combination of convolution neural networks
and bidirectional recurrent neural networks

(CNN+BRNN) (Feng et al., 2016) ‘%" NEW YORK UNIVERSITY



Issue of the traditional CNN

& Non-consecutive Patterns:

The mystery is that she took the in the first place or didn’t leave
earlier.

—non-consecutive convolutional neural networks (NCNN)
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Non-consecutive convolutional neural networks

(NCNN)

event mention with input sentence and current token for classification

A police officer was <anchor>killed</anchor> in New Jersey today
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Non-consecutive convolutional neural networks

(NCNN)

event mention with input sentence and current token for classification

Dynamic Programming
(the complexity time for
the pooling scores is still
linear)

A police officer was <anchor>killed</anchor> in New Jersey today
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Non-consecutive convolutional neural networks

(NCNN)

Methods F
Sentence-level in Hong et al (2011) 59.7
MaxEnt (Li et al., 2013) 65.9
Joint+Local (Li et al., 2013) 65.7
Joint+Local+Global (Li et al., 2013) 67.5
Cross-entity in Hong et al. (2011) t 68.3
Probabilistic soft logic (Liu et al., 2016) T 69.4
CNN (Nguyen and Grishman, 2015b) 69.0
DM-CNN (Chen et al., 2015) 69.1
B-RNN (Nguyen et al., 2016a) 69.3
NC-CNN 71.3

Event Detection Performance on ACE
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Event Realis Classification
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Event Realis Classification

@ Traimning the same NCNN model to classify for 3 Realis types (i.e,
GENERIC, ACTUAL and OTHER)

@ Examining some in-house modality features for event realis extracted
from the GLARF semantic parser, 1.¢:

» Scope of operator words, including quantifier (i.e, every,
some etc.), verbs licensing belief contexts (i.e, believe,
assume etc.), epistemic adverbs,adjectives (i.e, possibly,
maybe etc.), negation words (i.e, not, no, deny, refuse etc.)
etc

» Morphological features
» Attribution
» Manual rules (to predict a more fine-grained set of realis-like

distinctions like ACE)
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Event Realis Classification
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Event Coreference Resolution

@ A binary classification task for every event mention pair in a document
(1.e, whether two event mentions 1n a document corefer or not)

& Two event mentions corefer if their contexts are similar, and their
subtypes and realis match
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Event Coreference Resolution

Event Mention 1 Event Mention 2

NCNNI1 NCNN2
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Corefer or not
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NYU Event Nugget Submissions

Runs Components

typeEN realisEN corefEN
NYUI NCNN NCNN NCNN
NYU2 NCNN NCNN NCNN

+ Modality Features
NYU3 NCNN+BRNN NCNN+BRNN NCNN+BRNN

Table 1: Models and features for different runs of NYU.
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@ Training data for official submissions
» The training data for the Event Nugget 2015 evaluation
» The DEFT Rich ERE English Training Annotation Dataset

» Haft of the evaluation data for the Event Nugget 2015
evaluation (102 documents)

@ Development data:

» The remaining documents in the 2015 evaluation data (100
documents)
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Experiment Results

System | Plain | Type | Realis Type Coref

& Realis | score
NYUI 71.07 | 62.72 | 56.12 49.70 43.14
NYU2 | 71.16 | 62.65 | 57.41 50.43 43.40
NYU3 | 70.03 | 62.38 | 55.62 49 .86 43.94

Table 2: Performance of NYU1, NYU2 and NYU3 on
the development data.
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Experiment Results

System Plain Type Realis Type Coreference
& Realis

NYU1 53.84 44 .37 42.68 35.24 27.07

NYU2 52.39 44 .12 41.73 35.22 26.28

NYU3 54.07 44.38 41.19 33.60 26.94

Top site 54.59 46.99 39.78 33.58 30.08

Performance of NYU1, NYU2 and NYU3 on the 2016 official evaluation data for English
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Experiment Results

System Plain Type | Realis Type Coref

& Realis | score
NYUI 67.77 | 59.74 | 53.82 47.26 40.11
Top 1in 2015 | 60.77 | 57.18 | 40.35 38.06 39.12
Top 2in 2015 | 62.13 | 57.41 47.85 43.73 37.23
Top 3in 2015 | 64.56 | 57.45 | 45.21 39.67 32.36

Table 4: Performance comparison of NYU1 and the best

systems in the 2015 event nugget evaluation.
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Conclusions

@ Develop an Event Nugget system based on neural networks for the three
subtasks: event detection and classification, event realis classification
and event coreference resolution

@ Automatically extracts features from inputs

@ Although the system is pretty simple, it works pretty well
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THANK YOU!

(?’ NEW YORK UNIVERSITY



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

