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Abstract

This paper describes the Adverse Reaction Extraction from Drug Labels Track, part of the 2017 Text
Analysis Conference (TAC). Participants were provided with an annotated set of drug labels and chal-
lenged with: (1) extracting adverse reaction mentions and modifier terms such as negation, severity, and
drug class; (2) identifying relations between adverse reaction mentions and those modifiers, including
negation, hypothetical, and effect relations; (3) determining the unique set of positive adverse reaction
mention strings across all sections of a drug label; and (4) normalizing those adverse reaction strings to
a standard terminology, MedDRA. Ten teams submitted at least one valid run, with 20 submissions in
total.

Background

The U.S. Food and Drug Administration (FDA) is responsible for protecting the public health by assuring
the safety, efficacy, and security of all FDA-regulated products, including human and veterinary drugs,
prescription and over-the-counter pharmaceutical drugs, vaccines, biopharmaceuticals, blood transfu-
sions, biological products, medical devices, food safety, tobacco products, dietary supplements, cosmet-
ics, and electromagnetic radiation emitting devices. Within the FDA, the Center for Drug Evaluation
and Research (CDER) is responsible for regulating over-the-counter and prescription drugs, biological
therapeutics, and generic drugs. CDER is interested in developing automatic tools for drug-adverse re-
action signal detection. Current post-marketing safety signal generation in CDER relies on analysis of
spontaneous adverse event reports submitted to the FDA Adverse Event Reporting System (FAERS).
Some of these events are already known and reported in the Structured Product Labels (SPL) of drugs.
To detect novel adverse reactions more efficiently, CDER needs to automate the current manual approach
that requires reading the text of an adverse event report to determine if a given event is already noted in
the SPL. To do this, adverse events need to be extracted from the unstructured SPLs into a structured
list in the form of MedDRA (Medical Dictionary for Regulatory Activities Terminology) Preferred Terms
(PT). This will allow the linking of adverse events reported in FAERS (which are already normalized
to MedDRA PTs) to Structured Product Labels, thus allowing the FDA to automatically determine
whether a reported event is either already known (i.e., because it is in the SPL) or a previously unde-
tected adverse event.

This is a problem where natural language processing (NLP) systems can provide a great benefit to the
FDA and medical community in general. The purpose of this TAC track, therefore, is to test various NLP
approaches for their information extraction (IE) performance on adverse reactions in SPLs. While the
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ultimate goal is for NLP systems to extract MedDRA PTs from the drug labels (the standard structured
representation for adverse events), this track also evaluates and provides data for several intermediate
tasks, such as extracting mentions, relations, and identifying unique adverse reactions prior to mapping
them to MedDRA.

Related Work

The FDA has long been interested in applying data mining methods to further its pharmacovigilance
goals (Szarfman et al., 2004; Almenoff et al., 2005; Duggirala et al., 2015). While clinical trials form the
primary basis for determining the adverse events of a drug under FDA consideration, many issues with a
drug only arise after FDA approval. This could be due to the small percentage of people impacted by an
adverse reaction, its use in populations not studied in the trial, or a myriad of other potential reasons.
As such, both the FDA and outside researchers collect and analyze a significant amount of data for the
purpose of detecting adverse reactions as early as possible.

While the primary source for adverse events, the FDA Adverse Event Reporting System (FAERS), uses
structured data, quite a few pharmacovigilance methods involve natural language (Harpaz et al., 2014).
The particular source of data varies widely, each carrying its own set of challenges. These sources include

• the Vaccine Adverse Event Reporting System (VAERS) (Botsis et al., 2011)

• biomedical literature (Shetty and Dalal, 2011; Wang et al., 2011; van Mulligen et al., 2012; Xu and
Wang, 2014)

• electronic health records (EHRs) (Wang et al., 2009; Gurulingappa et al., 2012; Haerian et al., 2012;
Harpaz et al., 2013; LePendu et al., 2013)

• social media (Sarker et al., 2015) ranging from online health websites (Leaman et al., 2010; Chee
et al., 2011; Liu et al., 2011; Nikfarjam and Gonzalez, 2011; Yang et al., 2012; Liu and Chen, 2013;
Nikfarjam and Gonzalez, 2015), to Twitter (Bian et al., 2012; Jiang and Zheng, 2013; Nikfarjam
and Gonzalez, 2015), and search logs (White et al., 2013).

In contrast, relatively little work has been performed on drug labels. Fung et al. (2013) focused on drug
indications (why the drug was prescribed), as opposed to the subsequent reactions. Closer to the problem
studied in this track, two resources have extracted adverse events from drug labels: SPLICER (Friedlin
and Duke, 2010) and SIDER (Kuhn et al., 2010). This current TAC track is a refinement of these previous
approaches for five reasons. First, the gold standard was created entirely through manual annotation, as
opposed to rule- and dictionary-based approaches with minimal manual validation. Second, concepts of
adverse reactions were clearly defined by FDA definitions of adverse reactions and annotators followed
clear annotation guidelines when compiling (annotating, creating) the training and test datasets. Third,
editors from MedDRA-MSSO reviewed and validated annotations for SPL terms not easily mapped
to MedDRA PTs, ensuring an optimal mapping. Fourth, only the “Boxed Warning”, “Warnings and
Precautions”, and “Adverse Reactions” sections of the label were annotated, thus avoiding potential
confounding if other sections (such as the Contraindications section) were also included. Fifth, the goal
of this track is to develop a community-wide, transparent evaluation of SPLs (with a fully reviewed
annotated dataset of 200 labels) for further research purposes.

Data

The dataset consists of over two thousand drug labels: a training set of 101 labels, a test set of 99
labels, and an additional 2,109 unannotated labels. Participants were provided with the 101 annotated
training labels and the unannotated version of the 99 test labels mixed in with the 2,109 unannotated
labels. Since such a small percentage of these unannotated labels made up the gold standard test set, no
special test data release was necessary: participants were given immediate access to the combined 2,208
unannotated labels along with the annotated training set.

The drug labels were provided in an XML format that was greatly simplified compared to the original
DailyMed1 XML format. Figure 1 shows part of an original formatted drug label. This formatting was

1https://dailymed.nlm.nih.gov/
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Figure 1: Excerpt from the Adverse Reactions section of the Structured Product Label for drug Zytiga
(abiraterone acetate tablet).
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removed to generate the simplified XML. This format removal process is unfortunately lossy in nature:
removing the complex structure of the original XML necessarily results in some undesirable issues in
the simplified XML. It was felt, however, that simplifying the XML format to essentially flat text would
lower the barrier to entry for participants and allow the focus to be on NLP methods as opposed to XML
structure manipulation. The only formatting preserved from the original labels is the sections. SPLs con-
tain many sections (such as the “Adverse Reactions” section seen in Figure 1). Only the sections relating
to adverse reactions were kept: “Adverse Reactions”, “Warnings and Precautions”, and “Boxed Warn-
ing”. Not all labels have all sections: most of the studied labels have an “Adverse Reactions” section,
around half have a “Warnings and Precautions” section, and only a third have a “Boxed Warning” section.

The gold standard contains the following entity-style annotations:

• AdverseReaction: Defined by the FDA as an undesirable, untoward medical event that can
reasonably be associated with the use of a drug in humans. This does not include all adverse events
observed during the use of a drug, only those for which there is some basis to believe there is a
causal relationship between the drug and the adverse event. Adverse reactions may include signs
and symptoms, changes in laboratory parameters, and changes in other measures of critical body
function, such as vital signs and ECG.

• Severity: Measurement of the severity of a specific AdverseReaction. This can be qualitative
terms (e.g., “major”, “critical”, “serious”, “life-threatening”) or quantitative grades (e.g., “grade
1”, “Grade 3-4”, “3 times upper limit of normal (ULN)”, “240 mg/dL”).

• Factor: Any additional aspect of an AdverseReaction that is not covered by one of the other
entities listed here. Notably, this includes hedging terms (e.g., may, risk, potential), references to
the placebo arm of a clinical trial, or specific sub-populations (e.g., pregnancy, fetus).

• DrugClass: The class of drug that the specific drug for the label is part of. This is designed to
capture drug class effects (e.g., “[beta blockers]DrugClass may result in...”) that are not necessarily
specific to the particular drug.

• Negation: Trigger word for event negation.

• Animal: Non-human animal species utilized during drug testing.

Note that Severity, Factor, DrugClass, Negation, and Animal are only annotated when utilized
in one of the following relations with an AdverseReaction:

• Negated: Negation or Factor.

• Hypothetical: Animal, DrugClass, or Factor.

• Effect: Severity.

Examples of these annotations can be seen in Figures 2 and 3. See the Annotation Guidelines2 for more
details.

Next, the labels contain the unique, positive adverse reactions: both the de-cased strings of the positive
AdverseReactions and the mappings to MedDRA. The mappings contain the MedDRA Lowest Level
Terms (LLTs) and Preferred Terms (PTs).3 This corresponds to the primary goal of the track: to identify
the known AdverseReactions in a SPL in the form of MedDRA concepts, as represented by their PTs.

Some basic descriptive statistics about the gold standard corpus are shown in Table 1.

2https://bionlp.nlm.nih.gov/tac2017adversereactions/AnnotationGuidelines TAC2017ADR.pdf
3Each LLT has only one associated PT, so there is a deterministic mapping between them. While the PT is the ultimate

representation of the adverse event, the main advantage of providing the LLTs is that they are more directly identifiable from
natural language. For example, the phrase “increase in alt” corresponds to the LLT ALT increased and the PT Alanine
aminotransferase increased.
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Simple Severity/Effect example

Complex Severity/Effect example

Simple Factor/Negated example

Complex Factor/Negated example

Simple Factor/Hypothetical example

Complex Factor/Hypothetical example

Figure 2: Examples of AdverseReactions related to Severity and Factor annotations through Effect,
Negated, and Hypothetical relations.
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Simple DrugClass/Hypothetical example

Complex DrugClass/Hypothetical example

Simple Negation/Negated example

Complex Negation/Negated example

Simple Animal/Hypothetical example

Complex Animal/Hypothetical example

Figure 3: Examples of AdverseReactions related to DrugClass, Negation, and Animal annotations
through Hypothetical and Negated relations.
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Annotation Training Testing Total

# SPLs 101 99 200
# Sections 239 237 476

# AdverseReaction 13,795 12,693 26,488
# Animal 44 86 130

# DrugClass 249 164 413
# Factor 602 562 1,164

# Negation 98 173 271
# Severity 934 947 1,881
# Effect 1,454 1,181 2,635

# Hypothetical 1,611 1,486 3,097
# Negated 163 288 451
# Reactions 7,038 6,343 13,381

# MedDRA Mappings 5,882 5,185 13,501

Table 1: Basic descriptive statistics of the ADE annotations.

Tasks

The track contained four specific tasks, each one building upon the previous tasks in a “layered” approach:

Task 1 Extract AdverseReactions and related entities (Severity, Factor, DrugClass, Negation,
Animal). This is similar to many NLP named entity recognition (NER) tasks.

Task 2 Identify the relations between AdverseReactions and related entities (i.e., Negated, Hypo-
thetical, and Effect. This is similar to many NLP relation identification tasks.

Task 3 Identify the positive AdverseReaction entities in the labels. For the purposes of this task,
positive was defined as all the AdverseReactions that have not been negated (by a Negation or
Factor) and are not related by a Hypothetical relation to a DrugClass or Animal. Note that
this means Factors related via a Hypothetical relation are considered positive (e.g., “[unknown
risk]Factor of [stroke]AdverseReaction”) for the purposes of this task. The result of this task was a list
of unique strings corresponding to the positive AdverseReactions as they were written in the
label.

Task 4 Normalize positive AdverseReaction entity (strings) to MedDRA PTs. The result of this
task was a list of unique MedDRA preferred terms. Note that multiple unique strings may result
in the same MedDRA PT (e.g., “elevated alt” and “alt increases” both normalize to the MedDRA
term ALT increased), and in some cases a single string may result in multiple MedDRA PTs (e.g.,
“infections of the mouth with candida albicans” is two MedDRA PTs: Oral candidiasis and Candida
infection). Furthermore, there are AdverseReactions in the corpus that human annotators were
not able to map to MedDRA terms.

Tasks 1 and 2 correspond to traditional NLP information extraction (IE) tasks, while Tasks 3 and 4
involves more document-level aggregation (similar to phenotyping and problem list extraction). See
Tables 2-4 for examples of what participants were expected to extract. Table 2 shows a portion of the la-
bel for Abiraterone. Table 3 shows the extracted AdverseReactions for Task 1, represented graphically
(no other annotations are shown in this example for simplicity). Table 4 shows the AdverseReaction
strings (left column) for Task 2 and the normalized MedDRA Preferred Terms (right column) for Task 3.

While the tasks were designed to build on each other, participation was optional on a per-task basis (e.g.,
a team could participate in Tasks 1 and 2, or just Task 4).
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6 ADVERSE REACTIONS
The following are discussed in more detail in other sections of the labeling:
* Hypertension, Hypokalemia, and Fluid Retention due to Mineralocorticoid Excess [seeWarnings
and Precautions (5.1)] .
* Adrenocortical Insufficiency [seeWarnings and Precautions (5.2)] .
* Hepatotoxicity [seeWarnings and Precautions (5.3)] .

EXCERPT: The most common adverse reactions (>= 10%) are fatigue, joint swelling or discomfort,
edema, hot flush, diarrhea, vomiting, cough, hypertension, dyspnea, urinary tract infection and
contusion.

The most common laboratory abnormalities (> 20%) are anemia, elevated alkaline phosphatase,
hypertriglyceridemia, lymphopenia, hypercholesterolemia, hyperglycemia, elevated AST, hypophos-
phatemia, elevated ALT and hypokalemia.

Table 2: Portion of drug label for Abiraterone.

Table 3: Label annotated with AdverseReactions (no other annotations are present for simplicity).

AdverseReaction string MedDRA PT
hypertension Hypertension (10020772)
hypokalemia Hypokalaemia (10021015)
fluid retention Fluid retention (10016807)
mineralocorticoid excess Hyperaldosteronism (10020571)
adrenocortical insufficiency Adrenal insufficiency (10001367)
hepatotoxicity Hepatotoxicity (10019851)
fatigue Fatigue (10016256)
joint swelling Joint swelling (10023232)
joint discomfort Musculoskeletal discomfort (10053156)
edema Oedema (10030095)
hot flush Hot flush (10060800)
diarrhea Diarrhoea (10012735)
vomiting Vomiting (10047700)
cough Cough (10011224)
dyspnea Dyspnoea (10013968)
urinary tract infection Urinary tract infection (10046571)
contusion Contusion (10050584)
anemia Anaemia (10002034)
elevated alkaline phosphatase Blood alkaline phosphatase increased (10059570)
hypertriglyceridemia Hypertriglyceridaemia (10020869)
lymphopenia Lymphopenia (10025327)
hypercholesterolemia Hypercholesterolaemia (10020603)
hyperglycemia Hyperglycaemia (10020635)
elevated ast Aspartate aminotransferase increased (10003481)
hypophosphatemia Hypophosphataemia (10021058)
elevated alt Alanine aminotransferase increased (10001551)

Table 4: Extracted AdverseReaction strings (left) and corresponding MedDRA PT normalizations (right).
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Evaluation

Participants submitted system results on all unannotated labels (again, while the 99 labels composing
the test set were part of the unannotated set, the participants were not aware of specifically which labels
these were, so all 2,208 labels were processed by each system).

The evaluation measures were:

Task 1 Precision/Recall/F1-measure on AdverseReaction, Severity, Factor, DrugClass, Nega-
tion, and Animal entities using IE-style measurement (i.e., offset-dependent). Both mentions with
type and without type were evaluated. The primary evaluation metric was micro-averaged F1 across
the exact matched entity-level annotations (with type).

Task 2 Precision/Recall/F1-measure on Negated, Hypothetical, and Effect relations. Both the
full relation (all relations connected to an AdverseReaction mention) and binary relations were
evaluated, both with and without type. The primary evaluation metric was micro-averaged F1

across full relations (with type).

Task 3 SPL-level Precision/Recall/F1-measure on unique positive AdverseReaction strings (i.e., un-
normalized/un-mapped reactions). Both micro- and macro-averages across labels were evaluated.
The primary evaluation metric was F1 macro-averaged across labels (i.e., so labels with more
AdverseReactions are not disproportionately weighted).

Task 4 SPL-level Precision/Recall/F1-measure on unique MedDRA Preferred Terms. Both micro- and
macro-averages across labels were evaluated. The primary evaluation metric was F1 macro-averaged
across labels.

Participants

The ten participants, along with brief descriptions of their approaches, are as follows:

1. BUPT-PRIS Pattern Recognition and Intelligence System Lab, Beijing University of Posts and
Telecommunications. For Task 1, utilized a bi-directional LSTM-CRF (long short-term memory
conditional random field) model combining word and character embeddings. The word embed-
dings were static, using a pre-trained word2vec model. The character embeddings were learned
dynamically. For Task 2, utilized an adversarially-trained piece-wise CNN (convolutional neural
network).

2. CHOP The Children’s Hospital of Philadelphia. For Tasks 1 and 3, utilized a bi-directional LSTM
using fastText embeddings trained on MEDLINE. A high-precision rule-based system was also used
to identify reactions in tables. For Task 4, utilized word embeddings to map reaction strings to the
closest MedDRA LLT.

3. CONDL University of North Dakota. For Task 1, utilized a bi-directional LSTM-CNNs-CRF. For
Task 4, utilized a dictionary- and rule-based method where the dictionary was initially created
using MedDRA, after which several expansion and exclusion rules were applied.

4. GN team University of Manchester. For Task 1, utilized an ensemble of methods, including
knowledge-driven rules, CRF, and bi-directional LSTM. Combined classifiers through both voting
and stacked generalization.

5. IBM Research. For Task 1, utilized a bi-directional LSTM-CRF to identify contiguous mentions
and an attention-based bi-directional LSTM to identify when disjoint words belong to a mention.
For Task 2, utilized attention-based bi-directional LSTM.

6. MC UC3M MeaningCloud. For Task 1, utilized dictionaries built from MedDRA and SIDER with
a support vector machine (SVM) classifier, along with a rule-based method to identify modifiers.
For Task 2, utilized an SVM with lexical features. For Tasks 3 and 4, utilized rule-based methods
building on the output of Tasks 1 and 2.

7. Oracle. For Task 3, utilized a boosted ensemble of CRF models to identify mentions (though did
not submit results for Task 1); a rule-based approach to identify disjoint mentions; the ConText
algorithm to filter out mentions by negation, animal, or drug class; and a post-processing algorithm
to remove common types of error. The boosted ensemble used common NLP features along with
features based on the label structure (header, table, etc.) and domain knowledge (MetaMap and
UMLS).
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System (Run) Precison Recall F1

UTH CCB (3) 82.54 82.42 82.48
UTH CCB (2) 80.22 84.40 82.26
UTH CCB (1) 83.78 79.74 81.71
IBM Research 80.90 75.30 78.00
CONDL (1) 76.45 77.49 76.97
GN team (1) 80.19 72.23 76.00
GN team (2) 76.84 74.36 75.58
PRNA SUNY (1) 77.71 63.90 70.13
PRNA SUNY (3) 77.71 63.90 70.13
CONDL (3) 65.19 69.77 67.41
CONDL (2) 65.47 61.40 63.37
PRNA SUNY (2) 64.25 61.58 62.89
MC UC3M (1) 54.79 66.33 60.01
MC UC3M (2) 54.79 66.33 60.01
trddc iiith 79.14 43.12 55.83
CHOP 57.95 29.64 39.22
BUPT PRIS 40.47 11.81 18.29

Table 5: Task 1 Results

8. PRNA SUNY Philips Research North America / State University of New York at Albany. For
Task 1, utilized CRFs with morphological features, word embeddings, and dictionaries built from
VigiAccess.org and UMLS. For Task 2, utilized logistic regression with semantic and syntactic
features. For Task 3, utilized rules based on the output of Tasks 1 and 2. For Task 4, utilized
MetaMap and the Sub-Term Mapping Tool (STMT) to normalize reactions.

9. TRDDC IIITH TCS Research / IIT Bombay / IIT Hyderabad. For Tasks 1 and 2, utilized a joint
neural network model, the All Word Pairs neural network (AWP-NN), with pre-trained GloVe word
embeddings. An ensemble of AWP-NN models were used, each with a different initialization.

10. UTH CCB University of Texas Health Science Center at Houston. For Tasks 1 and 2, utilized
a bi-directional LSTM-CRF to identify AdverseReactions, followed by a second LSTM-CRF to
identify related modifiers (modifiers not participating in a relation were filtered). Several rules were
used to handle disjoint mentions. For Tasks 3 and 4, utilized a learning-to-rank approach. A BM25
model retrieved 10 MedDRA candidates, then RankSVM was used, including features based on the
BM25 score, Jaccard similarity, and the translation-based ranking.

Submissions from three additional teams did not pass the validation checks, mostly due to not submitting
all labels. Their submission results are not included here.

Results

The results for are shown in Tables 5 through 10. Task 2 was clearly the most challenging (max F1

of 49.00 compared to F1s in the low 80s for the other tasks). This is likely due to the fact that the
modifier terms (Animal, DrugClass, Factor, Negation, and Severity) were only annotated when
they existed in a relation with an AdverseReaction, and they were far less common over all. The
fairly high results on Task 4, on the other hand, are quite promising, with most systems achieving higher
than 75 macro-F1 and the best system achieving a 85 macro-F1. Overall this likely demonstrates that
the problem with Task 2 (rarity) also limits its downstream impact.

Discussion

We iterate that the knowledge gained from this track can provide great benefit to the FDA and the
medical and research community in general. NLP systems which enable linkage of adverse reactions
reported to the FDA with adverse reactions noted in labels (SPLs) will allow more rapid determination
of whether a particular adverse reaction is already known (i.e., present in the SPL) or unknown.

The results of this track will stimulate development and evaluation of more advanced NLP tools for
enhanced (greater precision and recall) extraction of adverse reactions from SPLs. Such enhanced ex-
traction will in turn enable creation of a standardized, searchable dataset containing information about
labeled (SPL) adverse reactions. This dataset will not only facilitate post-market surveillance for previ-
ously unobserved reactions but also other important activities such as determining whether a drug could
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System (Run) AdverseReaction Animal DrugClass Factor Negation Severity
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

UTH CCB (3) 85.1 85.3 85.2 89.4 68.6 77.6 50.3 49.4 49.8 64.9 71.4 68.0 67.6 57.8 62.3 66.4 61.5 63.8
UTH CCB (2) 83.4 86.9 85.1 83.4 86.9 85.1 46.2 44.5 45.3 61.3 76.0 67.8 55.4 65.3 59.9 62.5 67.7 65.0
UTH CCB (1) 86.4 82.4 84.4 89.2 67.4 76.8 50.9 49.4 50.2 65.6 70.6 68.0 69.5 56.6 62.4 67.1 60.4 63.6
IBM Research 82.3 79.2 80.7 92.6 29.1 44.2 59.1 33.5 42.8 72.4 66.2 69.1 70.6 41.6 52.4 65.6 46.6 54.4
CONDL (1) 78.4 79.6 79.0 85.3 74.4 79.5 44.3 50.0 47.0 65.5 79.2 71.7 69.3 54.9 61.3 62.9 57.2 59.9
GN team (1) 83.8 75.4 79.4 78.8 90.7 84.3 34.1 37.8 35.8 67.6 54.1 60.1 47.3 50.9 49.0 54.8 48.3 51.3
GN team (2) 80.5 76.8 78.6 78.8 90.7 84.3 23.7 31.7 27.2 61.7 66.4 63.9 47.2 53.2 50.0 57.7 56.0 56.8
PRNA SUNY (1) 78.6 67.6 72.7 79.7 68.6 73.8 65.3 28.7 39.8 70.2 44.0 54.0 70.8 19.7 30.8 66.6 40.2 50.2
PRNA SUNY (3) 78.6 67.6 72.7 79.7 68.6 73.8 65.3 28.7 39.8 70.2 44.0 54.0 70.8 19.7 30.8 66.6 40.2 50.2
CONDL (3) 65.5 70.8 68.0 85.3 74.4 79.5 44.3 50.0 47.0 65.5 79.2 71.7 69.3 54.9 61.3 62.6 56.5 59.4
CONDL (2) 65.5 70.8 68.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0
PRNA SUNY (2) 67.0 67.2 67.1 80.0 32.6 46.3 41.1 26.8 32.5 62.1 42.9 50.7 44.1 17.3 24.9 19.8 14.7 16.8
MC UC3M (1) 63.7 70.8 67.1 76.6 57.0 65.3 19.2 39.6 25.9 04.0 07.7 05.3 10.6 53.8 17.7 37.1 49.5 42.4
MC UC3M (2) 63.7 70.8 67.1 76.6 57.0 65.3 19.2 39.6 25.9 04.0 07.7 05.3 10.6 53.8 17.7 37.1 49.5 42.4
trddc iiith 80.4 47.7 59.9 100.0 03.5 06.7 30.0 01.8 03.4 65.0 16.2 25.9 00.0 00.0 00.0 54.4 16.4 25.2
CHOP 57.9 34.2 43.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0
BUPT PRIS 42.1 13.4 20.3 00.0 00.0 00.0 11.1 02.4 04.0 25.0 03.0 05.4 00.0 00.0 00.0 08.4 01.2 02.0

Table 6: Task 1 Per-Type Results

System (Run) Precison Recall F1

UTH CCB (3) 50.24 47.82 49.00
UTH CCB (1) 51.67 44.45 47.79
UTH CCB (2) 46.24 48.32 47.26
IBM Research 48.13 32.54 38.83
PRNA SUNY (1) 50.48 22.36 30.99
PRNA SUNY (3) 50.48 22.36 30.99
PRNA SUNY (2) 31.28 9.34 14.39
MC UC3M (2) 10.41 10.95 10.67
BUPT PRIS 0.97 0.38 0.55

Table 7: Task 2 Results

be repurposed (i.e., for a new indication) or finding patterns to predict drug interactions or other toxicity
by pharmacologic class or similar chemical moieties.

Conclusion

The goal of the TAC Adverse Reaction Extraction from Drug Labels Track was to evaluate and draw
attention to the important problem of identifying the adverse reactions described in SPLs. Having an
accurate list of known adverse reactions would be of tremendous value to the FDA in its many activities,
including pharmacovigilance. Ten teams submitted a total of twenty submissions across the four tasks
(17 submissions for Task 1, 9 for Task 2, 15 for Task 3, 12 for Task 4), with the top submission in the
ultimate task (Task 4) achieving a macro-average F1 of 85.33 at identifying MedDRA PTs in drug labels.
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System (Run) Effect Hypothetical Negated
P R F1 P R F1 P R F1
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PRNA SUNY (3) 60.5 26.4 36.7 53.8 26.5 35.5 57.8 09.0 15.6
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