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Abstract

This is our first time participating the KBP
tracks. We focus on the English mention de-
tection and classification tasks this year. Our
system achieves F1 score of 0.811 in 2017 En-
glish NERC evaluation, which ranks the first
among all participants. The system is devel-
oped based on a widely adopted BiLSTM-
CRF model which is considered as state of
the art for many sequence labeling tasks. In
this paper, we apply a multi-task version of
BiLSTM-CRF model to the NERC task, to bet-
ter utilize additional data sources. Further-
more, novel methods are proposed to enforce
data and label consistency at both training and
prediction time. Extensive experiments show
that our methods significantly improve the per-
formance over the baseline model.

1 Introduction

Mention detection (MD) and classification are
fundamental tasks in Natural Language Process-
ing (NLP). Mention classification are more widely
know as Entity Recognition(ER) which includes
named entity recognition and nominal entity
recognition. MD and ER are the building blocks
for higher level applications such as natural lan-
guage understanding, machine reading, etc. They
are usually treated as sequence labeling problems.
Although the topics have been studied extensively
for the past several decades, development of neu-
ral network and deep learning based methods in
recent years (Lample et al., 2016; Ma and Hovy,
2016; Yang et al., 2017; Kenton Lee and Zettle-
moyer, 2017; Xinchi Chen, 2017) significantly im-
prove the previous state-of-the-art.

A popular neural architecture for mention de-
tection and classification is BiLSTM-CRF (Lam-
ple et al., 2016). The architecture has been shown
to achieve bests performance on many sequence
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labeling problems. In real world applications,
training data in the specific domain of interest is
usually not enough to achieve best performance.
As a result, external data is needed to improve
model performance. For example, in the case of
KBP 2016 tracks, both the 1st and the 2nd teams
(ranking in the NERC evaluation) use external an-
notations (Liu et al., 2016; Xu et al., 2017). In
most cases, data distribution and labeling guide-
line from source domain (external data) is differ-
ent from that of target domain (domain of interest).
Therefore, training a model by simply combining
the target and source data may not yield satisfac-
tory results. Fortunately, BiLSTM-CRF architec-
ture provides a natural way to model the hetero-
geneity of the training data.

In this work, we apply a multi-task BiLSTM-
CRF architecture to the mention detection and
classification problem, with additional entity type
embeddings and domain adaption. Two novel
methods based on the theme of consistency are
proposed to improve the model performance.

Training Data Consistency

To ensure homogeneity between source and target
training data, adaptive training data selection is ap-
plied to source data to filter out instances with mis-
aligned annotation guideline. Data selection is in-
terleaved with model training iteratively, and this
training process terminates until convergence.

Prediction Label Consistency

Global label consistency is enforced at prediction
time. The goal is to capture document level con-
texts. A phrase is likely to be an entity if it is de-
tected in another sentence in the same document.
It also helps detect related mentions, such as the
mention jobs is more likely to be a PER when it
occurs in the same discussion forum with Apple.
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Figure 1: Neural architectures for mention detec-
tion and classification. a) Single-task model. b)
Multi-task model with domain adaptions.

2 Related Works

There are many works in literature on applying
neural networks to mention detection and entity
recognition problems (Lample et al., 2016; Ma and
Hovy, 2016; Yang et al., 2017; Peng and Dredze,
2016). Our work is most closed to (Yang et al.,
2017). However, we introduce additional channel
in the embedding layer and add domain adaption
layers (Peng and Dredze, 2016).

The idea of training data consistency is derived
from topics of data selection (Moore and Lewis,
2010) and instance weighting (Jiang and Zhai,
2007) from the transfer learning community. Dif-
ferent from previous work, we propose an adap-
tive selection approach interleaved with BiLSTM-
CRF model training. Global label consistency has
been studied in (Radford et al., 2015; Krishnan
and Manning, 2006). Here we share similar ideas
with previous work, but explore the use of a recent
neural network architecture, i.e. a dilated CNN
(Strubell et al., 2017), to the task, and compare
with dictionary based method.

3 Approach

This section describes the model used for the KBP
task. We first describe a slight variant of BiL-
STM and it’s multi-task version for transfer learn-
ing. Then we present in details how the theme of
consistency is applied to further improve the per-
formance.

3.1 BiLSTM-CRF

BiLSTM-CRF is a widely adopted neural architec-
ture for sequence labeling problems including MD
and ER. BiLSTM-CRF is a hierarchical model and
the architecture is illustrated in Figure 1(a).

The first layer of the model maps words to
their embeddings. Let x = (x1, · · · , xn) denote
a sentence composed of n words in a sequence,

with x′is as their word embeddings. In the sec-
ond layer, word embeddings are encoded using
a bidirectional-LSTM network, and the output is
h = (h1, · · · , hn), where ht = BiLSTM(x, t).
The encodings are further passed to a fully con-
nection network, to compute CRF features φ(x) =
G · h, and finally objective to optimize is the like-
lihood defined as the following,

p(y|x; θ) =
∏n

i=1 exp(θ · f(yi−1, yi, φ(x)))
Z

,

(1)

where y are predicted labels and Z is the nor-
malizing constant.

3.1.1 Character and Entity Embeddings
We extend the vanilla BiLSTM-CRF model by
adding character and entity embeddings to the em-
bedding layer. xi is the concatenation of word
embeddings, character embeddings and its entity
embeddings, xi = [ωi, ci, gi]. Character em-
beddings are modeled using another bidirectional
LSTM network at character level. Entity embed-
dings are derived from a noisy gazetteer created
using wikipedia articles. The gazetteer is derived
from the word-entity statistics from (Pan et al.,
2017). More specifically, each coordinate of the
entity embedding is the probability of a word oc-
curring as the corresponding entity type.

3.1.2 Domain Adaption
To explore external datasets, we apply multi-task
(MT) BiLSTM-CRF with domain adaptions, as
illustrated in Figure 1(b). The fully connection
layer are adapted to different datasets. The CRF
features are computed separately, i.e. φT (x) =
GT · h, φS(x) = GS · h for target and source
dataset respectively. The loss function p(y|x; θT ),
p(y|x; θS) are optimized in alternating order.

3.2 Adaptive Training Data Consistency
Multi-task training can alleviate some of the prob-
lem caused by data heterogeneity between target
and source. This section presents an adaptive data
selection algorithm that further removes noisy data
from source dataset.

The data selection procedure is described in de-
tails in Algorithm 1. At each iteration, data se-
lection from the source domain is interleaved with
model parameter updates. Training data is se-
lected based on a consistency score, which mea-
sures the similarity between target and source data



Algorithm 1 Adaptive Training Data Selection
Input: Target training dataset (x,y) ∈ T , source

training dataset (x′,y′) ∈ S.
Initialize: Strain ← S; X S = {x′ : (x′,y′) ∈
S}.

Repeat:
1. Train the model for one iteration, by opti-

mizing the following instance weighted object
function,

J =
∑

(x,y)∈T

p(y|x; θT )+
∑

(x′,y′)∈Strain

p(y′|x′; θS);

2. Compute consistency score for each training
example in S,

s(x) = max
i

∑
j

p(xi = j) log
p(xi = j)

q(xi = j)
,

where p(xi) ∼ softmax(φT (xi)) and
q(xi) ∼ softmax(φS(xi)));

3. Construct Ssame , Sdiff by the following,
Ssame = {x ∈ X S : s(x) < α} and
Sdiff = {x ∈ X S : s(x) > β};

4. Update source training set Strain,
Strain ← Strain ∪ Ssame \ Sdiff .

Until: |Sdiff | < k
Return: the final BiLSTM-CRF model.

distribution. Specifically, the consistency score is
derived from the KL divergence between φT (x)
and φS(x) for every word in the sentence in the
source training data. The iterations terminate until
there is few additional data to filter out , up to a
manually-set threshold.

3.3 Prediction Label Consistency

Arguably, a document level BiLSTM-CRF can
help capture the global consistency and con-
text, however, our experiment shows that docu-
ment level model underperform the sentence level
model if trained in one shot. This is not a surprise
due to the low memory capacity of RNN models.
As a result to a second pass approach for the prob-
lem. We experiment two approaches for enforcing
label consistency.

3.3.1 Dictionary-based label consistency
The dictionary-based approach maintains a dictio-
nary of all predicted named entities for each docu-
ment, and all entities in the dictionary are enforced
to the sentences where the entities are not recog-
nized in a second pass of the prediction. We re-
solve classification conflicts in a random fashion.

3.3.2 Model-based label consistency
In a model-based approach, we use word embed-
dings and predicted labels as model inputs, and
outputs are ground truth labels. The models are
trained at document level to learn global label con-
sistency. Dilated CNN is applied to model the in-
puts/outputs relationship. We choose CNN mod-
els because they are faster to train and have better
memory capacities for longer texts, which over-
comes the shortcomings of RNN models.

4 Experiments

This section presents experiments results of our
methods on the KBP evaluation datasets. We fo-
cus on Engilsh mention detection and classifica-
tion, which include both named entity recognition
(NAM) and nominal entity recognition (NOM).
The neural models are implemented using Tensor-
flow (Abadi et al., 2016). Dropout and gradient
clipping are applied when necessary to avoid nu-
merical issues during training. Performance num-
bers are reported using the NERC score as defined
in (Ji et al., 2016).

4.1 Datasets
KBP 2015 data is used for evaluation on the 2016
evaluation dataset. Both datasets are used for
training for KBP 2017 evaluation. We also lever-
age external data sources to improve model per-
formance. Unlike (Liu et al., 2016), manual anno-
tation is not feasible to us due to budget limit, we
instead use ACE (Walker et al., 2006) and ERE
(Song et al., 2015) entity annotations as source
datasets. It is worth noting that annotation guide-
lines are different from one dataset to another, es-
pecially for nominal entity annotations.

4.2 Baseline
The baseline is a BiLSTM-CRF model with only
word and character embeddings with source and
target data combined as training data. GloVe vec-
tors are used as word embeddings. NAM and
NOM models are trained separately with individ-
ually tuned parameters.



Methods NAM NOM Overall
baseline 0.809 0.587 0.748

+ entity embeddings 0.842 0.587 0.770

Table 1: Effectiveness of additional entity embed-
dings in model embedding layer.

Methods NAM NOM Overall
baseline +

entity embeddings
0.842 0.587 0.770

+MT 0.841 0.626 0.786
+MT + adaptive

data selection
0.842 0.634 0.788

Table 2: Effectiveness of training data consistency.

4.3 Results

First, we examine the performance impact of en-
tity embedding. As shown in Table 1, entity em-
bedding is very useful for both NAM and NOM
prediction tasks, and provides an overall perfor-
mance improvement of 2.2 F1 points. The entity
embeddings are derived from soft gazetteer fea-
tures. This experiment confirms the usefulness of
gazetteer even in neural network models.

Next the effectiveness of training data consis-
tency is evaluated. We compare MT domain
adapted models and adaptive data selection with
the baseline. Results in Table 2 show that both MT
and adaptive data selection can significantly im-
prove NOM detection. However, there is no gain
at all for NAM detection. We manually evaluate
the source and target datasets, and find that the an-
notation guideline and data distribution of NAM
data are quite the similar while there are some sig-
nificant differences for NOM data. Notably, many
of the plural form nouns are marked as nominal
entities in the ACE dataset while in our target KBP
tasks plural nouns are not entities in general.

Table 3 presents the performance impact of pre-
diction label consistency. Both dictionary and
model based approaches improve the overall F1
score. Dictionary based approach does not change
the NOM performance because only named enti-
ties are included in the dictionary. Optimal perfor-
mance of model based methods is obtained using
dilated CNN with 4 layers (with effective context
size of 31) (Strubell et al., 2017). Wider context
window does not improve model performance due
to sparsity of data.

Methods NAM NOM Overall
baseline +

entity embeddings
0.842 0.587 0.770

+ label consistency
(dictionary based)

0.851 0.587 0.778

+ label consistency
(model based)

0.850 0.595 0.779

Table 3: Effectiveness of prediction label consis-
tency.

Ensemble config Precision Recall F1
Single model 0.833 0.760 0.795

2/4 voting 0.827 0.790 0.808
3/4 voting 0.850 0.776 0.811

Union of two 2/4 0.831 0.791 0.811

Table 4: Overall F1 score with different ensemble
configurations.

The final model we submitted to the KBP track
are ensembles. We experiment different ensemble
configurations and the results are shown in Table
4. m/n voting means a voting based ensemble ap-
proach which selects a prediction if it’s produced
by m out of n models. There is a clear precision
and recall trade-off between 2/4 and 3/4 voting.
The model is more stable with 3/4 voting or two
2/4 voting combined.

Finally, we presents the evaluation results on
both 2016 and 2017 datasets, and compare them
with best scores of all KBP participants. As we
can see from Table 5, the additional training data
for KBP 2017 increases the overall model perfor-
mance by 0.7 F1 points.

Year Our F1 Best F1
2016 0.804 0.772
2017 0.811 0.811

Table 5: Performance comparison between 2016
and 2017 datasets.

5 Conclusion and Future Works

This paper presents novel methods to improve
neural mention detection and classification tasks,
based on a theme of consistency. Extensive ex-
periments show the effectiveness of the methods.
Work needs to be done to justify in theoretic foun-
dation the adaptive data selection algorithm. We



also plan to apply the methods described in this
paper to other languages.
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