
Adept Automatic Knowledge Discovery System for Cold Start

Knowledge Base Population

Manaj Srivastava, David Trupiano, David Akodes, Ilana Heintz, Hannah

Provenza, Bonan Min, Jay DeYoung, Lance Ramshaw, Roger Bock
Raytheon BBN Technologies

Cambridge, MA

{manaj.srivastava, david.trupiano, david.akodes, ilana.heintz, hannah.g.provenza,

bonan.min, jay.deyoung, lance.ramshaw, roger.bock}@raytheon.com

Abstract

We submitted to the TAC 2017 Cold Start

Knowledge Base Population (CSKB) track with our

Adept Automatic Knowledge Discovery (A2KD)

system. A2KD is an end-to-end knowledge base

population system that uses diverse information-

extraction (IE) algorithms provided by various

universities, and integrates their output in a coherent

way in order to populate a knowledge base. By the

time of submission, the A2KD system had algorithms

for Entity Discovery and Linking (EDL), Slot Filling

(SF), and Event Argument Linking (EAL) for

English and Chinese only. In addition to submitting

system output for monolingual English and Chinese

evaluations, we also submitted a bilingual variant

which used English and Chinese but no Spanish.

1. Introduction

The A2KD system was developed under the
DARPA-funded DEFT (Deep Exploration and

Filtering of Text)
1
 program. One objective of the

DEFT program is to achieve population of a

1
 https://www.darpa.mil/program/deep-exploration-and-filtering-

of-text

Distribution “A”: Approved for Public Release, Distribution
Unlimited (DISTAR 28780).

This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA). The views,

opinions and/or findings expressed are those of the author and

should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

knowledge base by integrating information extraction

algorithms from multiple providers. Using diverse

algorithms from multiple sources helps ensure that

A2KD uses the most reliable algorithm for any given

kind of information (entities, entity-links, relations,

events, etc.). A2KD provides a recipe for combining

disparate information extraction algorithms into a

single end-to-end system.

In this paper we describe the A2KD system and its

variants that we used to submit the results to CSKB

track. Section 2 provides a system overview. In

Section 3, we briefly describe the various algorithms

used for EDL, SF and EAL tasks for English and

Chinese. In Section 4, we describe the mechanism

employed by A2KD to integrate the output from

different algorithms at the document level. Section 5

describes our techniques for doing a corpus-level

integration of extracted information in a way that

ensures construction of a coherent Knowledge Base

(KB). Section 6 describes the final step of KB-level

processing (KB Resolution). We identified certain

discrepancies in the output KB that consistently

resulted from a limitation in an A2KD module (e.g.

chunk alignment), or in the output of one or more IE

algorithms (e.g., Stanford’s relation extraction would

assign very high confidence values to some incorrect

relations). This made us employ some post-

processing steps that fix these discrepancies. In

addition to that, A2KD also makes an attempt to do a

more sophisticated cross-document event co-

referencing. These steps make up the KB Resolver

module of A2KD, and are described in Section 6. In

Section 7, we describe the experiments we ran and

the iterative improvements we made to the system.

https://www.darpa.mil/program/deep-exploration-and-filtering-of-text
https://www.darpa.mil/program/deep-exploration-and-filtering-of-text

Section 8 lists the variants of A2KD system that we

used for our submission. In Section 9, we present the

scores of our submissions, and conclude the paper in

Section 10.

2. A2KD System Overview

A2KD system has the capability to populate a

knowledge base from scratch, starting with raw text

documents. Figure 1 outlines the architecture of the

A2KD system.

Figure 1 A2KD System Architecture

The core of the A2KD system includes modules

implementing information-extraction algorithms for

within document entity co-reference (entity coref),

linking of entities into an external knowledge base

(entity linking or Wikification), NIL-clustering of

entities not linked to the knowledge base (NIL

clustering), extraction of relations and their

arguments (relation extraction), and extraction of

events and their arguments (event extraction). A

majority of these algorithms are implemented by

various universities that participate in the DEFT

program. The EAL algorithms for both English and

Chinese are developed by BBN, so is the SF

algorithm for Chinese. Table 1 gives a list of the

algorithms used for English and Chinese languages

along with the names of the providers.

A2KD reads the input text documents and passes

them on to the various algorithm modules. Each

algorithm module produces its own output in the

form of an HltContentContainer object which

abstracts a collection of entities (including entity-

mentions and entity-links or NIL-cluster IDs),

relations (including relation arguments), and events

(including event arguments), along with their

justifications in the source documents and confidence

values assigned by the algorithms.

Once the algorithms are done processing a document,

their output is combined in a coherent way. To this

end, A2KD starts by doing chunk alignment. Chunk

alignment is the process by which document-level

entities extracted by the entity coref algorithm are co-

referenced with the ones produced by EDL, SF, and

EAL algorithms.

Algorithm Type Provider for

English

Provider for

Chinese

Within Document

Entity Co-reference

UIUC Stanford

Entity Linking

(without NIL-

Clustering)

RPI RPI

NILClustering
2
 UIUC, BBN UIUC, BBN

Slot Filling Stanford BBN

Event Argument

Linking

BBN BBN

Table 1: List of Algorithm Providers for the

A2KD System

A2KD uses this entity alignment information to

create a document-level cross-algorithm entity co-

reference mapping. This mapping is then used to

attach to a coref entity any wikified or NIL-cluster

IDs that the EDL algorithm has determined for the

mapped EDL entity. Similarly, this mapping is used

to replace an SF entity (or an EAL entity) with the

mapped coref entity whenever the former is an

argument of a relation (or event). This process of

merging entity-level attributes or entity-replacement

using document-level entity-alignment mapping is

called document-level integration. Along with using

entities extracted by the entity coref algorithm,

A2KD also uses additional entities that are extracted

by the entity-linking algorithm.

After the document-level integration, A2KD does a

cross-document co-referencing of entities, non-entity

arguments of relations and events, and the relations

and events themselves. For entities, this co-

referencing depends, among other things, on whether

the entities are linked to the same ID in the external

KB (or to the same NIL-cluster ID) as a result of

entity linking (or NIL-clustering). For non-entity

arguments, this co-referencing depends on the type

and the textual span of the arguments. For relations

and events, the co-referencing largely depends on the

type of the relation or event, the roles of its

arguments, and the particular entities or non-entity

objects that form the arguments of that relation or

event. Such a co-referencing also achieves a de-

duplication of artifacts at the corpus level. Once the

2
 BBN’s NIL-clustering is not part of the A2KD

system, but was used as an alternative to UIUC’s

NIL-clustering in some of our submissions

entities and non-entity arguments have been de-

duplicated, they are uploaded to the KB. This is done

so that the subsequent relation and event de-

duplication stages have access to non-duplicate

arguments.

Thereafter, A2KD does a final step called KB

Resolution which aims to fix certain kinds of

discrepancies that may still exist in the KB. KB

Resolution also does a more sophisticated cross-

document co-referencing of events.

A2KD provides the end user the ability to search and

view the content of the KB, or to dump the summary

of the content to flat files using an in-built reporting

module. For submission to TAC, we extended the

reporting module to dump the entire content of the

KB in the TAC specified format.

3. Algorithms Used in the A2KD System

In this section we will briefly describe the various

algorithms used in A2KD system.

3.1 Within Document Entity Co-

reference provided by UIUC

(Illinois-Coref)

UIUC’s DEFT Illinois Co-reference resolver is based

on the Illinois-Coref system described in (Peng et. al.

2015), and uses models trained on the ACE 2004

dataset
3
. The Illinois-Coref system uses a machine

learning approach to co-reference, with an inference

procedure that supports straightforward inclusion of

domain knowledge via constraints. The system first

uses heuristics based on Named Entity Recognition,

syntactic parsing, and shallow parsing to identify

candidate mentions. A pairwise scorer generates

compatibility scores for pairs of candidate mentions

based on extracted features, subject to linguistic

constraints. A left-to-right inference procedure then

determines the optimal set of links to retain,

incorporating constraints that may override the

classifier prediction for a given mention pair. Illinois-

Coref incorporates resources that allow detection of

non-referring phrases and gender agreement between

candidate mention pairs.

Illinois-Coref uses Illinois Named Entity Recognizer

(INER, described (Redman et. al. 2016)) for Named

Entity Recognition. During the integration of llinois-

Coref in A2KD, we qualitatively determined that

Illinois-Coref’s entity-types were not very reliable.

3
 https://catalog.ldc.upenn.edu/LDC2005T09

On the other hand, we found that the entity-types

generated by INER were much better. We, therefore,

decided to replace entity-types generated by Illinois-

Coref with those generated by INER. However, we

subsequently determined BBN’s EAL algorithm and

Stanford’s SF algorithm to be the most reliable

algorithms for entity-types. Therefore, in the final

version of A2KD we decided to replace Illinois-

Coref’s entity-types with those coming from BBN’s

EAL algorithm, or Stanford’s SF algorithm or INER,

in that order.

3.2 Within Document Entity Co-

reference provided by Stanford

(StanfordCoref)

The Stanford algorithm for Chinese within document

co-reference is described in (Lee et. al. 2013). It uses

a sieve architecture that applies a battery of

deterministic co-reference models one at a time from

highest to lowest precision, where each model builds

on the previous model’s cluster output. The two

stages of the sieve-based architecture, a mention

detection stage that heavily favors recall, followed by

co-reference sieves that are precision-oriented, offer a

way to achieve both high precision and high recall.

Further, this approach makes use of global

information through an entity-centric model that

encourages the sharing of features across all mentions

that point to the same real-world entity.

3.3 Entity-Linking provided by RPI

(RPI_EDL)

RPI’s Entity-Linking algorithm utilizes a domain and

language independent system (Wang et al., 2015),

which is based on an unsupervised collective

inference approach. Given a set of entity mentions M
= {m_1, m_2, ..., m_n}, this system first constructs a

graph for all entity mentions based on their co-

occurrence within a paragraph. Then, for each entity

mention m, it uses the surface form dictionary <f,
e_1, e_2, ..., e_k>, where e_1, e_2, ..., e_k is the set of

entities with surface form f according to their KB

properties (e.g., labels, names, aliases), to locate a list

of candidate entities e ∈ E and compute the

importance score by an entropy based approach

(Zheng et al., 2014). Finally, it computes similarity

scores for each entity mention and candidate entity

pair <m, e> and selects the candidate with the

highest score as the appropriate entity for linking. For

Chinese, this system first translates mentions into

English using name translation dictionaries mined

from various approaches described in (Ji et al., 2009),
then applies the same entity linking approach

described above.

https://catalog.ldc.upenn.edu/LDC2005T09

3.4 NIL-clustering provided by UIUC

(Illinois Wikifier)

UIUC’s DEFT Illinois Wikifier wraps the Cross-

Lingual Wikifier described in (Ratinov et. al. 2011)

and adds a NIL-clustering component. The Cross-

Lingual Wikifier uses the inter-language links from

Wikipedia
4
 entries in 12 languages to train a set of

cross-lingual embeddings based on words and

Wikipedia titles in the target languages. Monolingual

embeddings are computed for Wikipedia titles in

each target language, replacing the titles to lexical

contexts. Each language's monolingual embeddings

are projected into a common space with English

monolingual embeddings using alignment signals

from the inter-language Wikipedia links. Dictionaries

matching tokens and Wikipedia titles in each target

language to Wikipedia titles in English are used to

identify strings in input documents that may

correspond to Wikipedia entries, and identify a set of

candidate entries as the possible targets. A ranker

computes the similarity of the context of the

predicted mention with that of each candidate title to

select the most likely title. The context is based both

on the lexical embeddings of the predicted mention

context, and a representation of predicted mentions

and their targets in the mention context. A linear

ranking SVM model is trained to combine these

inputs, and the best-scoring candidate is used as the

predicted title.

Some mentions will be identified as likely to refer to

an entity, but have no viable target Wikipedia titles.

The Nil Clustering component groups these unlinked

mentions based on their character-level Jaccard

similarity, using thresholds tuned on the NIST TAC

2016 Entity Discovery and Linking data set
5
. These

thresholds set a minimum match on the character-

level overlap between mentions and also the number

of mentions that must surpass this threshold to allow

formation of a group. The identifiers of such groups

are set to the same value, indicating that they refer to

the same unknown entity.

3.5 BBN’s version of NIL-clustering

(BBN_NilClustering)

BBN implemented a naïve NIL-clustering algorithm

to cluster together similar entities that could not be

assigned a wikified ID by RPI_EDL algorithm. For

each of the entities without a wikified ID, a canonical

4
 https://www.wikipedia.org/

5
 http://nlp.cs.rpi.edu/kbp/2016/data.html

mention is selected. The selected canonical mention

is the NAM mention with the longest span. If a NAM

mention is not available, we select the NOM mention

with the longest span. Thereafter, these entities are

merged based on exact match of the selected

canonical mention’s text. However, entities with

differing types are not merged together.

3.6 Relation Extraction (SF) algorithm

provided by Stanford (StanfordSF)

The algorithm uses a rule-based extractor along with

a self-trained supervised extractor. The rule based

extractor uses rules based on dependency graph

structure, surface features, co-reference-chains, and

edit-distance between an organization-name and a

URL (to infer org:website relations). The self-trained

supervised system is a logistic-regression based

classifier with manually-crafted features and a Long

Short Term Memory network classifier. This is

further described in (Zhang et. al. 2016).

3.7 BBN’s Relation Extraction

algorithm (BBN_SF)

BBN’s relation extraction or Slot Filling algorithm

used for Chinese combines a set of Neural Network

models and a pattern-based extractor. The algorithm

is described in (Min et. al. 2017). The Neural

Network models are two sets of Convolutional

Neural Network (CNN) models, trained from ERE

and an internally annotated dataset respectively. The

pattern-based extractor applies proposition and

lexical patterns to text to find relations. The Slot

Filling component applies the CNN extractors and

the pattern-based extractor sequentially, and takes a

union of their results.

3.8 BBN’s Event Extraction (EAL)

algorithm (BBN_EAL)

For event extraction, we used BBN’s system that was

submitted to EAL track of last year’s TAC

evaluations. BBN’s algorithm employs a simple form

of joint inference, applies a variety of document-level

inference rules, and a sieve-based event linking

system to find events at the document level.

4. Chunk Alignment and Document-Level

Integration

Chunk alignment is the process of co-referencing an

entity from a certain “pivot” algorithm with entities

from non-pivot algorithms by aligning the mention-

spans of non-pivot entities to the mention-spans of

pivot entities. This helps in ensuring that—despite

coming from unrelated source algorithms—the

wikified or NIL-cluster ID for an entity, and the

relations or events that it takes part in, all refer to the

same entity.

For example, if from a certain document, the Illinois-

Coref algorithm extracts a PER entity “Barack

Obama”, while RPI_EDL extracts the same entity as

“President Barack Obama”, chunk alignment ensures

a mapping between “Barack Obama” and “President

Barack Obama” so that the wikified ID of “President

Barack Obama” can be assigned to the Illinois-Coref

entity “Barack Obama”. Additionally, if StanfordSF

extracts the same entity as “US President Barack

Obama”, chunk alignment ensures that Illinois-

Coref’s “Barack Obama” can replace StanfordSF’s

“US President Barack Obama” in any relations the

latter is an argument of. A2KD always treats the

entity coref algorithm as the pivot algorithm.

We call this process of using entity alignments to

merge relevant entity-level attributes or to replace

entities from non-pivot algorithms with entities from

the pivot algorithm document-level integration.

Document-level integration essentially creates a

composite data-structure (a composite

HltContentContainer object) that contains output of

all the algorithms in a way that appears to be the

output of a single composite algorithm.

A2KD’s chunk alignment uses matching rules, as

modified by algorithm-specific configurations, to

determine if two textual spans (chunks) should be

aligned to each other. The following matching rules

are applied in disjunction with each other and in the

order that they are listed in.

R1 (exact match): Two textual chunks should be

aligned if their start and end offsets in the document’s

text match, and the chunks represent the exact same

string.

R2 (no prepositions match): Two textual chunks

should be aligned if their end offsets match, and if the

longer chunk does not contain any prepositions (e.g.

“Barack Obama” should match with “President

Barack Obama” but not with “daughter of Barack

Obama”).

R3 (exact head match): If the two textual chunks

have head spans, they should match if and only if the

head-spans pass the R1 (exact match) test (e.g.

“daughter of Barack Obama” should match

“daughter” if both the spans for “daughter” have the

same offsets in the document text).

In addition to the above rules, the following

additional rules are applied if either text-span is an

appositive mention. These rules were added to handle

the mentions that come out of the BBN_EAL

algorithm, which outputs appositives along with the

modified noun-phrase, e.g. "US Senator from

Massachusetts, Elizabeth Warren". This span would

not match with either "US Senator from

Massachusetts" (span-end not matching) or

"Elizabeth Warren" (presence of a preposition).

R_APPO_1: If either mention is appositive and has a

head span, we should align the two mentions in

question only if the appositive’s head span matches

with the other mention based on rule R2.

BBN_EAL uses the first child mention of an

appositive as its head, so for the above example of

appositive mention, the head from BBN_EAL would

be "US Senator from Massachusetts", which would

match with “US Senator from Massachusetts”

coming from another algorithm. However, this would

still not match if the mention coming from the other

algorithm was “Elizabeth Warren”. To handle cases

like those, we apply the following rule if rule

R_APPO_1 has failed in finding the match.

R_APPO_2: If either mention is appositive and has a

head span, and rule R_APPO_1 does not result in a

match, the two mentions in question should match if

the remaining span of the appositive mention (span

without the head) matches with the other mention

based on rule R2.

In addition to matching rules, chunk alignment also

makes use of the following algorithm-specific

configuration.

useRelaxedAlignmentRule: This configuration allows

a chunk from an algorithm to align with a pivot

chunk if it is contained in the pivot chunk, bypassing

the other more specific rules. This kind of “relaxed”

alignment was added to address the issue of some

Illinois-Coref entities with very long spans missing

any alignment with StanfordSF or BBN_EAL entities

at all. The types of mentions to be aligned, and also

the types of the entities that the mentions map to,

must nonetheless match in order to weed out noisy

alignments. Currently, this configuration is used only

for StanfordSF and BBN_EAL entities when the

entity coref algorithm is Illinois-Coref and the

language is English.

5. Cross-Document De-duplication

After integrating artifacts from various algorithms at

the document level, A2KD does a merging or de-

duplication of these artifacts at the corpus level. This

is done in order to ensure uniqueness of these

artifacts. For example, if there are entities from two

or more different documents that link to the same

wikified ID, they are essentially a single real world

entity, and are therefore merged by A2KD to create a

single Entity object. Similarly, if there’s a

per:resident relation for that entity that is extracted

from two or more documents, all instances of that

relation need to be merged to ensure that A2KD has

justifications for the same real world relation from all

the documents that relation appeared in. Note that

merging of events in this stage is only partial, in the

sense that the merged events are required to have the

exact same set of entities or non-entity objects as

arguments. So, while two contact.meet events with

the same entity and date arguments will be merged

together, they will not be merged with a contact.meet

event with the same entity and date arguments but an

additional place argument. Such merging happens in

the KB Resolver stage.

When merging artifacts, A2KD makes sure that the

final merged or de-duplicated artifact contains all the

relevant information from artifacts contributing in the

merging. This includes taking a union of all the

provenances. In this section, we will describe what

forms the basis to merge artifacts of different types

(entities, non-entity arguments, relations, and events)

and how various attributes (like confidence and

provenances) for those artifacts are merged.

Table 2 gives a list of attributes for different artifact

types that A2KD uses to determine the uniqueness of

artifact of that type.

Merging of the artifacts entails merging their

attributes. The attributes determining the uniqueness

of an artifact do not need any merging since they are

shared across all the artifacts to be merged. Other

attributes do require merging. Merging of

provenances or justifications for any artifact type is

done by taking a union of provenances or

justifications attached to all the contributing artifacts

that are taking part in the merging. So, for entities,

the merging of provenances would entail taking a

union of all the entity-mentions for the contributing

entities. For relations, merging of provenances would

entail taking a union of justifications from all the

documents that the contributing relations have

appeared in, and so on.

Merging of the artifacts entails merging their

attributes. The attributes determining the uniqueness

of an artifact do not need any merging since they are

shared across all the artifacts to be merged. Other

attributes do require merging. Merging of

provenances or justifications for any artifact type is

done by taking a union of provenances or

justifications attached to all the contributing artifacts

that are taking part in the merging. So, for entities,

the merging of provenances would entail taking a

union of all the entity-mentions for the contributing

entities. For relations, merging of provenances would

entail taking a union of justifications from all the

documents that the contributing relations have

appeared in, and so on.

Artifact Type
Attributes determining the

uniqueness of the artifact

Entity
Wikified or NIL-cluster ID +

Entity Type

Non-Entity Text

Chunk (e.g. Date,

Title, Number,

Temporal Value

etc.)

Value of the text chunk + Type

of the artifact (if the artifact has

a type)

Relation or Event

Argument

Argument Role + Uniqueness

attributes depending on the

artifact-type of the argument

Relation
Relation Type + Uniqueness

attributes of all the arguments

Event
Event Type + Uniqueness

attributes of all the arguments

Table 2 List of attributes determining uniqueness

of artifacts

Merging of the artifacts entails merging their

attributes. The attributes determining the uniqueness

of an artifact do not need any merging since they are

shared across all the artifacts to be merged. Other

attributes do require merging. Merging of

provenances or justifications for any artifact type is

done by taking a union of provenances or

justifications attached to all the contributing artifacts

that are taking part in the merging. So, for entities,

the merging of provenances would entail taking a

union of all the entity-mentions for the contributing

entities. For relations, merging of provenances would

entail taking a union of justifications from all the

documents that the contributing relations have

appeared in, and so on.

The following subsections describe how other

attributes are merged.

5.1 Merging Entities

Merging Canonical Mentions

The A2KD system stores a KB-wide canonical

mention for each entity, for use in the A2KD UI

when viewing information for an entity. It is possible

for entities with different canonical mentions to have

the same wikified or NIL-cluster ID. For example,

the canonical mention for an entity can be “President

Obama” in one document, “Barack Obama” in

another document, and “POTUS 44” in yet another

document. These canonical mentions can also have

different confidences. For example, the entity coref

algorithm can be 100% confident that “President

Obama” is the correct canonical mention for the

entity it extracted from one document, but only 95%

confident that “POTUS 44” is the canonical mention

of an entity extracted from another document.

The value of the merged canonical mention is

determined as the most frequent value of the most

confident canonical mentions of the entities to be

merged. The confidence of the merged canonical

mention is the same as the confidence of the merged

entity (see below).

Merging Entity Confidences

The confidence of the merged entity is a weighted

average of confidence of individual entities, weighted

by number of entity mentions linked to each entity.

5.2 Merging Relations

Merging Relation Confidences

The confidence of a merged relation is a weighted

average of confidence of the individual relations,

weighted by the number of provenances of each

relation.

Merging Relation Argument Confidences

The confidence of a merged argument is a weighted

average of the confidence of that argument in the

contributing relations, weighted by the number of

provenances of that argument in the contributing

relations. If the number of provenances is zero for

any argument of the relation, the weight used for the

weighted average is the number of provenances of

parent relation.

5.3 Merging Events

Merging Event Confidences

The confidence of a merged event is a weighted

average of the confidence of the individual events,

weighted by the number of provenances of each

event. If an event does not have a confidence

(BBN_EAL produces events without a confidence

value), its confidence value is taken as the minimum

of the confidence values of its arguments. If none of

the arguments has a confidence value either, a default

value of 0.5 is used.

Merging Argument Confidences

The confidence of a merged argument is a weighted

average of the confidence of that argument in the

contributing events, weighted by the number of

provenances of that argument in contributing events.

If the number of provenances is zero for any

argument of the event, the weight used for the

weighted average is the number of provenances of

parent event. If the confidence value for an argument

is not available, the confidence of the parent event is

used. If the confidence of the parent event is not

available either, a default value of 0.5 is used.

6. KB-Level Processing (KB Resolution)

In the KB produced by above mechanism, we could

still find certain inconsistencies. For example, we

often found that more than one entity—with differing

types—were assigned the same wikified (or NIL-

cluster) ID. Sometimes this could be attributed to

limitations in entity-typing of the IE algorithms,

while other times this was due to a limitation of the

chunk alignment algorithm. Similarly, we saw

opportunities to improve the output of certain

algorithms in ways that would make more sense, or

to make the content of the KB more presentable to an

end-user. For example, we found that StanfordSF can

sometimes assign very high confidence values to

many incorrect relations. In order to fix such issues,

we run a post-processing step in A2KD which we call

KB Resolution (since it attempts to resolve the KB to

a more coherent state).

Resolving Multiple Entities with the same

Wikified ID

A qualitative analysis of the cases where multiple

entities were linked to the same wikified or NIL-

cluster ID showed that the linked entities usually

differed in their type (e.g. JFK (LOC) and John F.

Kennedy (PER) would both be linked to the wikified

ID for John F. Kennedy (PER)). The correct entity

out of the ones linked would usually be the entity

with the most mentions. We therefore resolved this

issue by keeping the entity with the most entity

mentions, and removing all other entities from the

KB. In order to ensure overall consistency, we also

removed any relations or events that contained the

removed entities as an argument. While we did not

do a quantitative impact analysis on SF or EAL

scores for any fixes made in KB Resolution stage, we

did manually review sample output. A qualitative

inspection of the entities (with their corresponding

relations and events) removed showed that most

deletions were appropriate.

Resolving Confidences for StanfordSF Relations

We scale down the confidence of all relations to 70%

of the StanfordSF-assigned confidence. We

experimented with raising the confidence of relations

with many justifications, and with further lowering

the confidence of relations for which high-frequency

arguments were not often linked, but these changes

had little effect.

Resolving Entities with Incorrect Mentions

Due to limitations of our chunk alignment algorithm

or the output of coref or entity linking algorithms, it

is possible for a merged entity to have some incorrect

mentions that actually belong to a different entity.

For example, when both George H.W. Bush and

George W. Bush appear in a document, it is possible

for the coref algorithm to mix up a mention of

“Bush” for George H.W. Bush with a mention of

“Bush” for George W. Bush. If the mentions for

either entity are too few and the confidences assigned

to them are nearly same, the mixed up mention can

result in the chunk alignment algorithm aligning

George W. Bush from coref algorithm with George

H. W. Bush from entity linking algorithm, and

merging their mentions. For the final entity for

George W. Bush, it is possible for there to be a small

set of mentions with canonical string George H.W.

Bush depending on how many documents the two

entities appeared in and were co-referenced

incorrectly in.

To address such cases, for entities with a very high

number of mentions, we look for mentions that have

canonical strings that represent fewer than 15% of all

of the mentions. These mentions are split into

separate entities. Relations and events involving these

entity mentions as arguments are also edited to point

to the correct entity. Note that the split entity would

still have the same wikified (or NIL-cluster) ID as it

had originally. Since, this step of entity-splitting is

done after the step of dropping entities with minority

type that have the same wikified (or NIL-cluster) ID

(as explained above), we do not end up losing the

split entities.

Cross-Document Event Co-reference

The event co-referencing that happens earlier in

A2KD (as described in Section 5.3) merges events

that have the exact same set of arguments. This may

be insufficient in cases where the same real world

event appears with different sets of arguments in

different documents. To address this issue, in the KB

Resolution stage, we take an additional pass at cross-

document event co-referencing.

We use an implementation of the cross document

event co-reference system used by BBN in the 2016

TAC Event Arguments evaluation. It uses high

precision rules based on events, arguments, roles, and

cross document entity co-reference or EDL to

determine which events to link. An event is a

collection of event arguments of identical event type;

an event argument consists of a filler (entity, a phrase

such as "twelve monkeys" or "life in prison", or a

time), a role, an event type, and a probability

distribution over realis values. The overall function

of the cross document event co-reference algorithm

can be thought of as a process of filling in the third

partition of a tripartite graph. This graph consists of

partition (A), the event arguments; partition (B), the

events themselves; and partition (C) the cross

document events, where an edge between (A) and (B)

indicates a membership relation of an argument to an

event, and an edge between (B) and (C) represents an

equivalence relation between events.

(A) and (B), and all edges between them come from

the EAL output of the A2KD KB. We discard any

fillers from (A) that have an entirely Generic realis,

and any roles not used in any of our rules. The edges

between (B) (events) and (C) (cross document

events) are built in two steps: (1) by joining any pair

of events that share at least two arguments in the

same role/filler combination (for a limited set of

roles), have no more than a total of eight fillers

between the two events, and have no more than four

fillers in any resulting role; (2) by a reification

process described below.

For efficiency purposes, step (1) of forming the cross

document events is done via a partition by event type,

and a partition by shared event arguments. A

limitation of this design is that the edges initially

output by (1) are not equivalence relations, because

each event will appear in a different partition (or

multiple partitions) and be processed separately, thus

the initial links from (B) to (C) are not proper

equivalence relations. To make them equivalence

relations, we reify the output so for any three events

(x), (y) and (z), where (x), (y) are in (C_1) and (y),

(z) are in (C_2), (C_1) and (C_2) become the same

partition. This is done via a simple connected

components algorithm using a breadth-first search

across partitions (B) and (C). Finally, we form

confidence and realis values for the output events by

taking an average weighted by the amount of

justification each has.

7. Experiments and Results

Dataset Used

For our experiments to evaluate the A2KD system,

we used the datasets used for TAC evaluations in

2016
6
.

The dataset used for our English EDL experiments

was a set of 169 documents, out of which 84 were

newswire documents and the remaining were

discussion forum documents. For our English SF

experiments, the dataset consisted of a total of 5387

documents, 3836 out of which were newswire

documents, and the remaining were discussion forum

documents.

Given the constraints of time, we were not able to do

experiments or scoring with A2KD for EAL, or for

Chinese EDL or SF.

Experiments Run

Most of our experiments dealt with improving the

EDL scores for English. This was chosen as the main

6
 http://nlp.cs.rpi.edu/kbp/2016/data.html

focus because the SF and EAL scores depended on

the quality of EDL output. Below we describe our

EDL and SF experiments for English.

English EDL Experiments

Most of the English experiments were run without

KB Resolver. This was because with our initial

experiments, we found KB Resolver to have only

marginal effect on the EDL scores, and also because

we identified more scope of improvement in the core

A2KD modules of chunk alignment and document-

level integration.

Most of our experiments also did not include UIUC’s

NIL-clustering, since it became available a little later.

Also, note that for EDL experiments, the chunk

alignment configuration useRelaxedAlignmentRule

(as described in section 4) was not used. This rule

was added during SF score optimization as will be

explained in the following sub-section. Nonetheless,

adding this rule did not have any effect on the final

best EDL scores that we obtained with our EDL

experiments.

For our EDL experiments, we focused only on the

strong_typed_mention_match metric, and all the

scores we report here pertain to that. These scores are

summarized in Table 3. Note that for some of the

experiments, we failed to record the P or R values;

these are marked as NA in the rows corresponding to

those experiments.

Our baseline EDL F-score was 0.426. This was using

mention-heads from BBN_EAL and entity-types

from StanfordSF and INER (in that order).

Subsequently, we decided to prefer entity-types from

BBN_EAL over StanfordSF, since we qualitatively

observed BBN_EAL entity-types to be the most

reliable of all IE algorithms used. Since the quality of

entity-type reassignment depends on the quality of

chunk alignment, we made certain improvements to

the latter. We added the alignment rules R_APPO_1

and R_APPO_2 (as described in Section 5) to better

align appositive mentions. We also found that the

A2KD system was not providing the text from

HEADLINE element of newswire documents to the

algorithm-modules. This was resulting in missing any

mentions from the headline text. After fixing this,

and including a couple other small fixes like

dropping the leading determiner from a mention-

span, and dropping certain mentions that were group

words (like people, group, crowd, etc.), the EDL F-

score showed significant improvement and jumped to

0.512.

Neither Illinois-Coref nor RPI_EDL extracts names

of posters from discussion forum (DF) documents as

mentions. Each DF post has the poster name

mentioned in its metadata. This made us augment the

A2KD KB with discussion forum poster names as a

post-processing step. By doing that, we saw an

increase of nearly 6.6% in the EDL F score.

On this version of A2KD, we ran KB Resolver, and

got a small improvement of 0.3% in F-score. Note

that none of the experiments reported until this point

had KB Resolver run on the final KB. From this point

onwards, all improvements were done as post-

processing steps augmenting the KB produced by KB

Resolver.

Similar to adding poster names from DF documents,

we also added text from AUTHOR elements of

newswire documents as mentions. This

implementation had a small bug, however, which

extracted the text from author elements as is, even

when it had author names followed by their

affiliation (organization names). We fixed this bug

before our final submissions, but not for this

experiment, which got us a small increase in F-score

of 0.2%.

We then realized that our A2KD output also included

plural nominal mentions, which the TAC reference

files did not expect. Dropping plural nominals

brought the F-score to 0.630.

Features/Improvements P R F

Baseline (with BBN_EAL

mention heads)

0.406 0.449

0.420

BBN_EAL types + better

chunk

alignment+headline+grou

p-word fix

0.456

0.583

0.512

Using DF poster names 0.499 0.687

0.578

Above improvements with

KB Resolver

0.505 0.683 0.581

Using newswire author

names

NA NA 0.583

Dropping plural nominals 0.583 0.686 0.630

Dropping long mentions NA NA 0.651

Changing type of

“government” from NAM

to NOM

NA NA 0.674

Table 3 Summary of English EDL Experiments

We found that some of the mentions were too long.

These were mostly bogus mentions that started with a

URL. We also found that filtering out nominal

mentions with more than a certain number of tokens

helped improve the scores. We experimented with

dropping nominal mentions that were longer than 2

tokens or 1 token, and found that we got the best

scores by dropping nominal mentions longer than a

single token. By dropping bogus mentions and

nominal mentions longer than one token, we could

improve the F-score to 0.651.

As a final post-processing step, after finding that

numerous instances of the mention “government”

were tagged with type NAM instead of NOM, we

made a specific fix for these cases to change the

mention type to NOM. This gave us an improvement

of 2.3% in F-score.

After the above improvements to the EDL system, we

shifted our focus toward improving the SF scores.

English SF experiments

For our SF experiments, we report only the 0-hop

micro P, R and F scores. A summary of the iterative

improvements can be found in Table 4 (rounded to 3

significant digits).

Our baseline F-score was 0.1026. We found that we

were losing a good number of relations from

StanfordSF because many of its entities were not

getting aligned with Illinois-Coref entities. This was

resulting in dropping of any relations that had these

unaligned entities as arguments. On analyzing this

issue, we found that the failure of alignment was due

to some very long mention-spans coming out of

Illinois-Coref which were failing alignment with

shorter yet reasonable StanfordSF mention spans

given our existing set of chunk alignment rules. This

made us add the useRelaxedAlignmentRule rule for

chunk alignment (as described in section 4). After

adding this rule, our SF F-score moved up by a little

over 1% to 0.1143.

Features/Improveme

nts

P R F

Baseline 0.356 0.060 0.103

Relaxed chunk

alignment

0.313 0.070 0.114

Using naïve NIL-

clustering

0.335 0.071 0.117

Fixes in A2KD and

StanfordSF

0.379 0.090 0.145

Using UIUC NIL-

clustering

0.373 0.090 0.145

Table 4 Summary of English SF Experiments

The other main reason for low F-score was found to

be absence of corpus-level NIL-clustering. Since

UIUC’s NIL-clustering was still not a part of A2KD,

we used BBN’s naïve NIL-clustering implementation

instead. With naïve NIL-clustering, the scores

improved a tiny bit to 0.1174. We subsequently fixed

a few bugs in A2KD and updated StanfordSF with a

version that produced provenances for relation

arguments. Additionally, we made a fix in A2KD to

reassign entity-types for entities that filled an SF slot

based on the expected type for that slot. For example,

if an LOC entity appeared in the “Victim” slot of a

Life.Die relation, A2KD would reassign the type of

that entity to PER. These changes brought the score

to 0.1453. Finally, we ran an experiment with all the

above fixes but using UIUC NIL-clustering instead of

BBN’s naïve NIL-clustering and the final best F-

score that we obtained was 0.1449.

8. Description of Systems Submitted for

Evaluation

We submitted output KBs from 10 different variants

of A2KD system for evaluations: 4 for Chinese, 4 for

English and 2 for cross-lingual evaluation.

The variants of Chinese systems differed in the NIL-

clustering algorithm employed (UIUC or BBN), and

whether the BBN SF algorithm was optimized for a

higher precision or a higher recall. These systems

were as follows:

A2KD_Adept_KB_CMN_1 (CMN_1): This system

used UIUC’s NIL-clustering and BBN SF component

optimized for higher precision.

A2KD_Adept_KB_CMN_2 (CMN_2): This system

used UIUC’s NIL-clustering and BBN SF component

optimized for higher recall.

A2KD_Adept_KB_CMN_3 (CMN_3): This system

used BBN’s naïve NIL-clustering and BBN SF

component optimized for higher precision.

A2KD_Adept_KB_CMN_4 (CMN_4): This system

used BBN’s naïve NIL-clustering and BBN SF

component optimized for higher recall.

Similar to Chinese variants, the variants of English

systems also differed in the NIL-clustering algorithm

employed. In addition, these variants differed in

whether a fix for per:title relations (“pertitle fix”) was

added on top of the output of the Stanford SF

algorithm. This fix would look for per:title relations

where the same title was attributed to more than one

person entities in the same sentence, and would

resolve the attribution in favor of the person entity

whose textual span is closer to the span of the

extracted title. The English variants were as follows:

A2KD_Adept_KB_ENG_1 (ENG_1): This system

used UIUC’s NIL-clustering and had the pertitle fix.

A2KD_Adept_KB_ENG_2 (ENG_2): This system

used UIUC’s NIL-clustering and did not have the

pertitle fix.

A2KD_Adept_KB_ENG_3 (ENG_3): This system

used naïve NIL-clustering and had the pertitle fix.

A2KD_Adept_KB_ENG_4 (ENG_4): This system

used naïve NIL-clustering and did not have the

pertitle fix.

For the cross-lingual variants, the only NIL-

clustering algorithm used was BBN’s naïve NIL-

clustering, since UIUC’s NIL-clustering does not

support NIL-clustering across different languages.

These systems, therefore, differed only based on

whether the BBN Chinse SF algorithm used was

optimized for higher recall or higher precision.

A2KD_Adept_KB_XLING_1 (XLING_1): This

system used the BBN SF component optimized for

higher precision.

A2KD_Adept_KB_XLING_2 (XLING_2): This

system used the BBN SF component optimized for

higher recall.

9. Results

In this section, we present the scores of our systems.

Since none of our submissions included Spanish, we

are not presenting the scores of any cross-lingual

evaluations, since those would be artificially low.

Our scores for monolingual EDL evaluations for

English and Chinese are listed in Table 5 (to avoid

repetition, we do not report scores from systems that

only differ in SF algorithm). We are only reporting

the scores for strong_typed_mention_match (stmm),

strong_typed_all_match (stam),

strong_typed_link_match (stlm), and

strong_typed_nil_match (stnm) metrics.

For monolingual SF evaluations, we report K3 0-hop

Average Precision (AP) scores for SF-ALL-Macro

(sfam-0) and K3 ALL-hop AP scores for LDC-

MEAN-ALL-Macro (lmam-ALL) metrics. We report

these scores for only our best-performing systems

(based on SF-ALL-Macro scores). For the ALL-slots,

EVENT-slots-only and SF-slots-only evaluations, the

scores for both English and Chinese are listed in

Table 6. For both English and Chinese, our systems

with BBN’s naïve NIL-clustering (ENG_3, CMN_4)

did better than other systems. For the reported

metrics, ENG_4 did as good as ENG_3. The recall-

optimized algorithm for Chinese (CMN_3) also

seems to have helped in outperforming other variants.

Language System

Name

stmm

F

stam

F

stlm

F

stnm

F

English ENG_1 0.689 0.493 0.518 0.461

ENG_3 0.688 0.489 0.513 0.459

XLI_1 0.570 0.431 0.500 0.342

Chinese CMN_1 0.608 0.408 0.440 0.332

CMN_3 0.606 0.408 0.439 0.335

XLI_1 0.611 0.410 0.443 0.332

Table 5 System-wise EDL scores

Language Slot-type System

Name

sfam-0

AP

lmam-

ALL

AP

English ALL ENG_3 0.0954 0.0963

EVENTS ENG_3 0.1490 0.1644

SF ENG_3 0.0907 0.0807

Chinese ALL CMN_4 0.0918 0.0899

EVENTS CMN_4 0.1099 0.1082

SF CMN_4 0.1141 0.1102

Table 6 Best scores for K3 SF queries

10. Conclusion

In this paper, we have described our submissions to

the TAC CSKB track. Our system, A2KD, is a recipe

for combining the multitude of information extracted

by various open source information extraction

algorithms in order to populate a Knowledge Base.

We discussed the mechanism employed by A2KD to

ensure that the document-level information extracted

by the contributing algorithms is coherently

integrated at the corpus-level. The techniques used to

that end included 1) chunk alignment and document-

level integration, and 2) corpus-level co-referencing.

The KB Resolution stage then uses information

available at the corpus-level to further refine the

quality of the assertions stored in the KB.

We also discussed the experiments we did to improve

the accuracy of our final A2KD output, and our

results from this year’s TAC evaluation.

11. References

Haoruo Peng, Kai-Wei Chang Dan Roth, A Joint

Framework for Coreference Resolution and Mention

Head Detection, CoNLL (2015) pp.10

Tom Redman and Mark Sammons and Dan

Roth, Illinois Named Entity Recognizer: Addendum

to Ratinov and Roth '09 reporting improved

results, Tech Reports (2016)

Heeyoung Lee, Angel Chang, Yves Peirsman,

Nathanael Chambers, Mihai Surdeanu and Dan

Jurafsky, Deterministic Coreference Resolution

Based on Entity-Centric, Precision-Ranked Rules,

Computational Linguistics (December 2013) p.885-

916

Han Wang, Jin Guang Zheng, Xiaogang Ma, Peter

Fox, and Heng Ji, Language and domain independent

entity linking with quantified collective validation,

EMNLP (2015)

Jin Guang Zheng, Daniel Howsmon, Boliang Zhang,

Juergen Hahn, Deborah McGuinness, James Hendler,

and Heng Ji, Entity linking for biomedical literature,

BMC Medical Informatics and Decision Making

(2014)

H. Ji, R. Grishman, D. Freitag, M. Blume, J. Wang,

S. Khadivi, R. Zens, and H. Ney, Name extraction

and translation for distillation,
Handbook of Natural Language, Processing and

Machine Translation: DARPA Global Autonomous

Language Exploitation (2009)

L. Ratinov and D. Roth and D. Downey and M.

Anderson, Local and Global Algorithms for

Disambiguation to Wikipedia, ACL (2011)

Yuhao Zhang, Arun Chaganty, Ashwin Paranjape,

Danqi Chen, Jason Bolton, Peng Qi, Christopher D.

Manning, Sealing Pipeline Leaks and Understanding

Chinese, TAC KBP (2016)

Bonan Min, Zhuolin Jiang, Marjorie Freedman and

Ralph Weischedel, Learning Transferable

Representation for Bilingual Relation Extraction via

Convolutional Neural Networks, To appear in

IJCNLP (2017)

http://cogcomp.org/papers/MentionDetection.pdf
http://cogcomp.org/papers/MentionDetection.pdf
http://cogcomp.org/papers/MentionDetection.pdf
http://cogcomp.org/papers/ner-addendum.pdf
http://cogcomp.org/papers/ner-addendum.pdf
http://cogcomp.org/papers/ner-addendum.pdf
http://www.mitpressjournals.org/author/Lee%2C+Heeyoung
http://www.mitpressjournals.org/author/Chang%2C+Angel
http://www.mitpressjournals.org/author/Peirsman%2C+Yves
http://www.mitpressjournals.org/author/Chambers%2C+Nathanael
http://www.mitpressjournals.org/author/Surdeanu%2C+Mihai
http://www.mitpressjournals.org/author/Jurafsky%2C+Dan
http://www.mitpressjournals.org/author/Jurafsky%2C+Dan
http://cogcomp.org/papers/RRDA11.pdf
http://cogcomp.org/papers/RRDA11.pdf

