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Abstract

In this paper, we present an overview of
the BUPT-PRIS System for two KBP tasks
and two ADR tasks at TAC 2017. The
KBP tasks consist of event nugget de-
tection and coreference task (EN), and
event argument extraction and linking
task (EAL), while the ADR tasks con-
sist of mentions annotation task and re-
lations annotation task. For KBP tasks,
we propose an attention-based joint model
with two constraints and two downstream
models to tackle EN and EAL tasks.
For ADR tasks, we combine birectional
LSTMs (Bi-LSTMs) and conditional ran-
dom fields (CRFs) which are based on
character embeddings and word embed-
dings to tackle the mentions annotation
task. Then we employ advanced adversar-
ial training method with piece-wise convo-
lutional neural networks (CNNs) for rela-
tions annotation task.

1 Introduction

Text Analysis Conference (TAC) is an evaluation
workshop in Natural Language Processing which
includes two large tracks in 2017 – one is Knowl-
edge Base Population (KBP) track and the other is
Adverse Drug Reactions (ADRs) track. For KBP
track, several tasks have been launched such as en-
tity discovery, event extraction, sentiment analy-
sis. Similarly, ADR track includes four tasks, such
as mentions annotation (task1) and relations anno-
tation (task2). In this year, we participate in four
tasks in both tracks: (1) event nugget task and (2)
event argument task in KBP track, and (3) men-
tions annotation task and (4) relations annotation
task in ADR track.

In our system, we adopt a joint model proposed
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Figure 1: Overview of our TAC2017 system for
the TAC KBP 2016 tasks

by (Nguyen et al., 2016) to tackle the event nugget
detection and event argument extraction tasks in
KBP track. And then we use two downstream
models to address the event REALIS detection
and event nugget coreference problems. Figure 1
shows the system architecture of our models. As
shown in Figure 1, we use the Stanford CoreNLP
to preprocess the document firstly. Secondly we
use an attention-based joint model to extract the
event nugget and event argument. Then a support
vector machine based classifier is used to detect
the REALIS type of event. Finally, we use a rule-
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Figure 2: The architecture of our attention based joint model

based model to tackle the event coreference prob-
lem.

For ADR track, we employ a pipeline approach
for mentions annotation task and relations annota-
tion task. First, we extract mention-style tokens
including six types: AdverseReaction, Severity,
DrugClass, Negation, Animal and Factor. And
then we propose a relations annotation model to
identify the relations between AdverseReactions
and related mentions (i.e., Negated, Hypothetical
and Effect). Both mention and relations annota-
tion tasks are challenging because scarce training
data limits the usage of supervised learning meth-
ods like CRF, BiLSTM, BiLSTM-CRF, etc. Poor
results of mentions annotation also deteriorate re-
lations annotation models performance.

Mentions annotation task in ADR track can
be seen as a sequential tagging problem. Con-
ventional sequential labeling algorithms, such as
Hidden Markov Models (HMMs) (Rabiner and
Juang, 1986), Maximum entropy Markov mod-
els (MEMMs) (McCallum et al., 2000), and Con-
ditional Random Fields (CRFs) (Lafferty et al.,
2001), rely on handcrafted features to infer the
label sequences. By modeling the unary poten-
tial functions of a CRF as NN model, recent
work (Huang et al., 2015) has combined the ben-

efits of neural networks with CRF. Based on their
model, we use Bi-LSTMs to extract features from
the input sequences, and a CRF layer to infer the
output sequences. Similarly, we treat relations
annotation in ADR track as a text classification
problem. Previous works have tried to incorporate
rich linguistic structures and semantic information
into sentence representation, such as position fea-
ture (Zeng et al., 2014), bidirectional local infor-
mation (Cai et al., 2016) and tree structure (Miwa
and Bansal, 2016). Our system employs an ad-
versarial training (AT) method adapted from Wu
et al. (2017). AT generates continuous perturba-
tions which are added up with word embeddings.
As a way of regularizing the classifier, adversarial
training can improve model robustness and fit in
small training dataset.

The remainder of this paper is organized as fol-
lows. Section 2 and Section 3 describe our system
for KBP track. Specifically, we describe our joint
model for event nugget detection and event argu-
ment extraction tasks in Section 2. In Section 3,
we present our REALIS detection model and event
coreference model. Then, we introduce our mod-
els for mentions annotation and relations annota-
tion tasks in ADR track in Section 4 and Section 5
respectively. Finally, we show some experimental



results of both tracks in Section 6, and futhermore
offer conclusions in Section 7.

2 Joint Event Extraction

In this section, we introduce our model for event
nugget extraction and event argument extraction.
Our works are based on the JointEE model men-
tioned in (Nguyen et al., 2016). Different from
JointEE, we introduce an attention machenism and
two constraints to improve the accurancy of event
nugget detection and event argument extraction
tasks. Figure 2 show the architecture of our at-
tention based joint model. As shown in figure 2,
we divide the event nugget detection and event
argument extraction processing into three phases:
sentence encoding, event nugget identification and
subtyping, and event argument extraction.

2.1 Sentence Encoding

In the encoding phase, we use a bidirectional
Gated Recurrent Unit (GRU) to encode the sen-
tence. Specifically, we first transform each token
wi into a real-valued vector xi using the concate-
nation of the following four vectors:

1. The word embedding vector of wi. We use
the google pretrained word vectors which
trained on word2vec (Mikolov et al., 2013).

2. The binary vector for the entity type of wi.
The dimension of this vector is equal to the
number of possible entity types.

3. The binary vector for the dependency feature.
The dimension of this vector corresponds to
the possible relations between words in the
dependency trees. The value at each dimen-
sion of this vector is set to 1 only if there ex-
ists one edge of the corresponding relation
connected to wi in the dependency tree of
sentence.

4. The binary vector for the part-of-speech
(POS) of wi. The dimension of this vector
is equal to the number of possible POS tags.

The transformation from the token wi to the
vector xi essentially converts the input sentence
W into a sequence of real-valued vectors X =
(x1,x2, ...,xn), to be used by recurrent neural
networks to learn a more effective representa-
tion. The input sequence X is then fed into a bi-
directional GRU to get the representations of the

sentence. At each time step i, we compute the
hidden vector hi based on the current input xi and
the pervious hidden vector hi−1. This recurrent
computation is done over X to generate the hid-
den vector sequence (h1,h2, ...,hn), denoted by
BiGRU(x1,x2, ...,xn) = (h1,h2, ...,hn).

2.2 Event Nugget Extraction

Following the sentence encoding stage, we first
compute the feature representation vector Ri

trg for
wi using the concatenation of the local context
vector for wi and hi. Specifically, the local context
vector is generated by concatenating the vectors
of the words in a context window d of wi. Then
we feed Ri

trg into a feed-forward neural network
FFNtrg with a softmax layer in the end to com-
pute the probability distribution P i

trg over the sub-
types of trigger. Finally, we use ti = argmaxP i

trg

to get the trigger type ti for token wi.
Different from the model mentioned in (Nguyen

et al., 2016), we use a POS constaint to imporve
the accurancy for event nugget detection. Specifi-
cially, we find not all the words are possible to be
event trigger. For example, conjunctions and nu-
merals are impossible to be event trigger but verbs
are on the contrary. We use the constraint when ex-
tract triggers: if a token is conjunction or numeral,
the corresponding trigger type should be “Other”.

2.3 Event Argument Extraction

In the event argument extraction stage, we first
check if the predicted trigger subtype ti in the pre-
vious stage is “Other” or not. If yes, we simply
set rij (the role of entity mention entj w.r.t. token
wi) to “Other” for all j = 1 to k and go to the next
stage immediately. Otherwise, we predict the ar-
gument role rij for each entity mention entj with
the head index jk.

First, we generate the representation vector ej
for entj by concatenating the features in Table 1.
Secondly we feed ej into a feed-forward neural
network to get a distributed representation edisj for
entj . Then we use two ways to predict the event
role of entj . For the first model, we just concate-
nate edisj and hi, and finally feed the result into a
feed-forward neural network FFNarg with a soft-
max layer to predict the event argument. For the
second model, we use an attention machanism to
get sentence information with respect to entj :

cj =
∑
i

αjihi (1)



Feature Description

Local context vector
of entj

The concatenation of
the vectors of the
words in a context

window of wjk

Entity type The entity type of entj

Dependency feature
The dependency feature

of wjk

POS feature The POS of wjk

Table 1: Features for event argument extraction.

αji =
edis

T

j Whi∑
i′ e

disT
j Whi′

(2)

We finally concatenate the cj , edisj and hi to
a vector. Like event nugget detection, we use a
feed-forward neural network with softmax to pre-
dict the event argument.

As the POS constraint we use in event nugget
detection, we also use a trigger constaint to im-
porve the accurancy of the event argument extrac-
tion. The constraint of event argument with re-
gards to trigger subtype can be seen in Rich ERE
Annotation Guidelines .

3 REALIS Detection & Event
Coreference

For REALIS detection, we use a one-to-rest sup-
port vector machine to identify the REALIS type.
And we identify event coreference with three
rules:

• Rule 1. A pair of events are coreferential only
if two events have the same subtypes.

• Rule 2. A pair of events is coreferential only
if two event triggers have the same lemma-
tized forms.

• Rule 3. A pair of events is coreferential only
if two events have the same REALIS types.

Following the three rules, we identify a pair of
events which conforming to all the three rules as
coreferential events.

4 Mentions Annotation

In this section and the following section, we in-
troduce our models of mentions annotation task

and relations annotation task in ADR track respec-
tively. Figure 3 shows the network structure which
has an input layer x, hidden layer h and output
layer y. Fig 3 illustrates a mentions annotation
system in which each word is tagged with one la-
bel from the following: other(O), AdverseReac-
tion (Adver), Severity (Sev), DrugClass (Drug),
Negation (Neg), Animal (Ani), and Factor(Fac).
The sentence “Exclusive of an uncommon, mild
injection site reaction, no other adverse reactions
have been reported. ” is tagged as “O O O O O S-
Sev B-Sever M-Sever E-Sever O O O O O O O O
O ”, where B-,M-,E- tags indicate beginning, mid-
dle and ending position of mentitions respectively,
and S- tag indicates the single word mention.

4.1 Input Embeddings
Input embeddings are concatenated by word vec-
tors and character-based embedddings of words.
Word vectors are looked up from an embed-
ding matrix which is pretrained using word2vec.
And character-based embeddings are hidden states
from the bidirectional LSTMs layer.

4.2 Bi-LSTM Encoder
The LSTM memory cell is implemented as the fol-
lowing:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3)

ct = (1− it)⊙ ct−1 + ittanh(Wxcxt+

+Whcht−1 + bc) (4)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (5)

ht = ot ⊙ tanh(ct) (6)

where σ is the element-wise sigmoid function, and
⊙ is the element-wise product.

For a given sentence (x1, x2, ..., xn) containing
n words, the LSTM layer computes representa-
tions of

−→
lt and←−rt containing left and right context
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Figure 3: Main architecture of mentions annotation network. Input embeddings of the d-dimensional
vectors are concatenated by word vectors and character-based embedddings of words. Concatenated
embeddings are given to a bidirectional LSTM to get a representation of the word i in its context, ci.

information of each word, respectively. Then two
kinds of representations are concatenated to form
the input of Bi-LSTM ct = [

−→
lt ,
←−rt ].

4.3 CRF Tagging Models

We model tagging decisions jointly using a
CRF layer (Lafferty et al., 2001). For an input
sentence X = (x1, x2, ..., xn) and a sequence
of predictions y = (y1, y2, ..., yn), its score is
defined as:

s(X, y) =

n∑
i=0

Ayi,yi+1 +

n∑
i=1

Pi,yi (7)

where Ai,j represents the score of a transition from
the tag i to j. Pi,j represents the score of the jth

tag of the ith word in a sentence.

5 Relations Annotation

5.1 Word Embedding

We define relations annotation task as predicting
the relation that exists in a particular entity pair.
We use the model mentioned in Wu et al. (2017).
For each sentence xi with an entity pair (m1, m2),
we first use pretrained word embeddings to project
each token into dw-dimensional space. The out-
of-vocabulary words are represented as unknown
symbols “UNK”.

5.2 Position Embedding

Note that most CNN-based models (Kim, 2014;
Santos et al., 2015; Collobert et al., 2011) depend
on position embeddings pi that encode position in-
formation and calculate in continuous space. Posi-
tion embeddings are initialized using normal dis-
tribution and fixed on training and test stages. We
set the max distance from an entity as 90.
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Figure 4: The model architecture of ADR relations annotation task. ei denotes the adversarial perturba-
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5.3 Feature Extraction
We adopt piece-wise CNN (Zeng et al., 2014)
to encode the sentence with annotated entity pair.
Entity pair (m1, m2) splits the sentence into three
parts and convolution operates on each part of
the sentence. After Max-pooling, we concatenate
three pooling results and get the sentence feature
si. We add dropout operation to word embedding
layer and sentence feature representation of 0.5.
A fully-connected network and softmax functiona
are performed to get prediction results. The prob-
ability of relation r is:

P (r|X; θ) = softmax(Asr + b), (8)

where A is the projection matrix and b is the
bias term. Small adversarial perturbations eadv
are added to word embedding V and optimizes as
Eq.(7) .

L(X; θ) = −logP (r|X; θ). (9)

Ladv(X; θ) = L(X + eadv; θ) (10)

eadv = arg max
||e≤ϵ||

L(X + e; θ̂). (11)

With respect to Eq.(8), it is computationally in-
tractable for neural networks, so an approximate

way proposed by Goodfellow et al. (2014) is ap-
plied:

eadv = ϵg/||g||, where (12)

g = ∇V L(X; θ̂) (13)

Here V denotes the word embeddings of all the
words in X. ||g|| denotes the norm of gradients
over all the words from all the sentences in X. ϵ
represents the coefficient of perturbations.

6 Experiments

6.1 Data

The data provided in TAC 2017 can be devided
into two parts: one for KBP track and another
for ADR track. For the EN and EAL tasks in
KBP track, we use LDC2017E02 and ACE2005 as
training datasets. In our systems, 80% of the docu-
ments are used for model training, and the remain-
ing 20% are used for development, specifically for
tuning hyper-parameters in our model. Note that
we only evaluate on the 18 event types and sub-
types selected by the KBP 2017 organizers. For
ADR track, the original data has 101 annotated
labels and 2208 unannotated labels. We prepro-
cess the original data with several steps, such as



Metric Run1 Run2 Run3
Prec Rec F1 Prec Rec F1 Prec Rec F1

plain 67.95 32.74 44.19 72.91 26.78 39.17 65.38 29.69 40.84
mention type 58.92 28.39 38.31 65.44 24.04 35.16 54.24 24.64 33.88

REALIS 46.36 22.34 30.15 49.76 18.28 26.73 46.15 20.96 28.83
mention type + REALIS 39.92 19.24 25.96 44.48 16.34 23.90 38.66 17.56 24.15

Table 2: Event nugget detection performance on the KBP 2017 official evaluation.

Metric Run1 Run2 Run3
B3 28.66 26.19 25.53

CEAFe 28.64 26.19 24.90
CEAFm 30.17 27.71 26.40
MUC 19.30 18.00 18.54

BLANC 13.56 11.97 12.47
Average 22.54 20.59 20.34

Table 3: Event coreference resolution performance on the KBP 2017 official evaluation.

extracting sentences with tagged mentions and re-
lations, eliminating the mentions that span in mul-
tiple incontinuous tokes and filtering the relations
existing in two sentences. These operations result
in 6449 samples containing at least one mention
and 2353 relation sentences for training and de-
veloping finally.

6.2 Results and Analysis

6.2.1 Event Nugget Extraction and
Coreference

Table 2 shows the results of event nugget detec-
tion in KBP track, which includes three runs for
our systems. For run1 and run2, we use atten-
tion mechanism to get sentence information when
identify the event argument roles. Run3 is the
model without using attention mechanism. When
examining the result of each type, we find that
events of type Contact, Manufacture, Movement
and Transaction have lower performance. One
source of precision error can be attributed to the
difference of trigger label distribution in the train-
ing set and evaluation set. For example, in train-
ing set the proportion of trigger with type Move-
ment is about 7%, but in evaluation the propor-
tion is about 18%. One source of recall error can
be attributed to the difficulty of correctly extract-
ing features in discussion forum documents owing
to their informal writing style. A source of both
precision and recall error can be attributed to the
error accumulation from entity mention identifica-
tion and coreference.

Table 3 shows the official results of event coref-
erence resolution in KBP track. For event corefer-
ence, a source of precision error is that we do not
use argument information. A source of recall error
is from Rule 2 in section 3. According to Rule 2 ,
some coreferential events which have triggers with
different lemmatized form can not be detected.

6.2.2 Event Argument Extraction and
Linking

The official results of event argument extraction
and linking in KBP track are shown in Table 4.
As event nugget detection, a source of event argu-
ment extraction error is the difference of argument
role distribution between training set and evalua-
tion set. Another source of event argument extrac-
tion error is from the model. Because we use a
joint model to extract event nuggets and event ar-
guments, the performance of both EA tasks is in-
fluced by event nugget detection. Moreover, the
bad performance of event coreference resolution
is another important source of the event argument
linking error.

6.2.3 Mentions Annotation and Relations
Annotation

Table 5 and table 6 are our evaluation results of
mentions annotation and relations annotation in
ADR track. Note that P represents the precision,
R represents the recall, F1 is calculated by 2PR

P+R .



Run ArgP ArgR ArgF1 ArgScore LinkScore
Run1 17.50 2.55 4.45 0.75 0.32
Run2 23.73 2.59 4.66 1.18 0.45
Run3 15.45 2.27 3.95 0.58 0.35

Table 4: Event argument exrtraction and linking performance on the KBP 2017 official evaluation.

Results P R F1

Exact (+type) 0.4047 0.1181 0.1829
Exact (-type) 0.4047 0.1181 0.1829

Table 5: Mentions annotation task results. Bold
result means PRIMARY.

Results P R F1

Full (+type) 0.0097 0.0038 0.0055
Full (-type) 0.0135 0.0054 0.0077

Binary (+type) 0.0163 0.0068 0.0096
Binary (-type) 0.0196 0.0081 0.0115

Table 6: Relations annotation task full results.
Bold result means PRIMARY.

7 Conclusion

This paper presents BUPT-PRIS System in the
2017 TAC evaluation. In this system, we propose
four models to tackle event nugget detection and
coreference task, event argument extraction and
linking task, mentions annotation task and rela-
tions annotation task respectively. For the first two
tasks which are part of KBP track, we employs a
joint model which integrates trigger information
and arguments information for the tasks. In addi-
tion, we incorperate attention mechanism and two
constraints to improve the performance of our sys-
tem. For the remaining two tasks which belong
to ADR track, adapt entity extraction to mentions
annotation and apply adversarial training model
to relations annotation. However, There are still
some deficiencies in our system. For example, we
only use an end-to-end model to tackle the event
nugget detection and event argument extraction,
which would be worth incorporating more classi-
fiers to furthre improve the system performance.
Another challenge is that our models are under
great influence of lack and imbalance of data, and
we will integrate semi-supervised methods to the
existed architecture to tackle these problems.
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