
UZH at TAC KBP 2017: Event Nugget Detection via Joint Learning with
Softmax-Margin Objective

Peter Makarov Simon Clematide
Institute of Computational Linguistics,

University of Zurich, Switzerland
makarov@cl.uzh.ch simon.clematide@cl.uzh.ch

Abstract

This paper presents the CLUZH systems
for the TAC KBP 2017 Event Nugget De-
tection Task. We submit three runs in
all three languages: English, Spanish, and
Chinese. Each run is an ensemble of
five recurrent neural network (RNN) sys-
tems. Run 2 ensembles over pipelines of
an RNN Span/Subtype classifier followed
by an RNN Realis classifier. Each system
of the Run 3 ensemble is a jointly learned
model that predicts all properties of the
Event Nugget: its Span, Subtype, and Re-
alis. Unlike the other runs, Run 1 is trained
without early stopping on all labeled data.
For each language, it uses the architec-
ture that results in the best development
set performance: joint models for English
and Spanish and pipelines for Chinese. All
single models are trained with a softmax-
margin objective that heavily penalizes re-
call and entity errors. We achieve the high-
est overall scores for all three languages
in this year’s evaluation, largely with our
Run 1. Our post-submission experiments
indicate that joint models are consistently
better than pipelines; pre-trained embed-
dings, cost-sensitive learning, and bidirec-
tional RNN encoding are crucial to the
models’ strong performance; ensembling
always helps; but trading early stopping
for training with more data is error-prone.

1 Introduction

This paper presents the submissions of the
CLUZH team to the Event Nugget Detection (EN)
Task of the TAC KBP 2017 evaluation. The high-
lights of our work are i) the joint extraction of
all the Event Nugget properties (Span, Subtype,

Realis) as opposed to the classical pipeline so-
lution, ii) the application of cost-sensitive learn-
ing to boost recall as the task is vastly dominated
by non-Event tokens, and iii) ensembling mod-
els to fight high variance. For feature encoding,
we choose a standard RNN architecture for se-
quence labeling: a single-layer bidirectional Long
Short-Term Memory (LSTM) encoder. As in-
put, we use off-the-shelf word vectors and simple
morpho-syntactic features derived from the Stand-
ford CoreNLP toolkit.

Novosti’s
BROADCAST,ACTUAL︷ ︸︸ ︷

coverage of Ukrainian
DEMONSTRATE,ACTUAL︷ ︸︸ ︷

protests may
well have hastened its demise.

Figure 1: A sentence with gold Event Nuggets:
“coverage” triggers one BROADCAST Event, and
“protests” triggers one DEMONSTRATE Event.
The Realis value of both Events is ACTUAL.

We submit three runs in all three languages (En-
glish, Spanish, and Chinese), and each run is an
ensemble of five systems. Run 2 is an ensemble
of more common pipelines of Span/Subtype and
Realis classifiers. Run 3 ensembles over jointly
learned models predicting all Nugget properties at
once. Run 1 does not feature any new model de-
sign; instead, it uses all available labeled data for
training and no early stopping. Other than this,
Run 1 is just like Run 2 or 3, depending on which
ensemble has the highest development set perfor-
mance for that language.

In the following, we first present the task and
our simplified reformulation of it. The gold EN
data feature a number of complex phenomena, e.g.
Event Nuggets triggering multiple Events of dif-
ferent Subtypes. Fortunately, most of these dif-
ficult cases are infrequent, and so one typically
simplifies the task to avoid them altogether. Next,
we list the datasets that we use for training. We



Type Subtypes
CONFLICT ATTACK, DEMONSTRATE

CONTACT BROADCAST, CONTACT, COR-
RESPONDENCE, MEET

JUSTICE ARREST-JAIL

LIFE DIE, INJURE

MANUFACTURE ARTIFACT

MOVEMENT TRANSPORT-ARTIFACT,
TRANSPORT-PERSON

PERSONNEL ELECT, END-POSITION,
START-POSITION

TRANSACTION TRANSACTION, TRANSFER-
MONEY, TRANSFER-
OWNERSHIP

Table 1: Eight Event Types and eighteen Event
Subtypes of the TAC KBP 2017 EN Task.

then discuss feature encoding, which is shared by
all single models across all languages. We then
present our classifiers, training and ensembling
methodologies. We conclude with a discussion
of our official results and post-submission exper-
iments.

2 Task Description and Reformulation

An Event Nugget is a span of text that most con-
cisely and directly refers to an Event, or triggers
it (Figure 1). One Event Nugget can trigger mul-
tiple Events. In the 2017 version of the EN Task,
the Event ontology comprises eighteen Subtypes,
each of which also uniquely determines the Type
of the Event (Table 1). The factuality of the Event
is captured by the Realis attribute, which has three
values: ACTUAL, GENERIC, and OTHER.

EN is, thus, the task of identifying

1. character spans of all Event Nuggets in a doc-
ument,

2. the Types and Subtypes of the Events trig-
gered by the Event Nuggets, and

3. the Realis values of these Events.

We simplify this task in a number of ways, often
suggested by other researchers.

Token As Event Nuggets are predominantly
single-token expressions, following Reimers and
Gurevych (2015, 2017), we do not use any label
encoding schemas like IOB. We also identify sub-
token Event Nuggets with full tokens. Thus, if the
Event Nugget is “ex”, we choose to predict the

full token instead e.g. “ex-military”. We do not
attempt to correct such cases in a post-processing
step.

Span Following Nguyen et al. (2016b); Lu and
Ng (2016), we directly predict the Subtype of each
token, including the NULL-Subtype that corre-
sponds to a non-Event. Similarly, our joint model
directly predicts the structured Subtype–Realis la-
bel of each token, and the structured (NULL-
Subtype)–(NULL-Realis) label corresponds to a
non-Event token. The Span is then deterministi-
cally derived from the predicted label.

Subtype If an Event Nugget triggers multiple
Events of one Subtype, we learn to predict only
one Event of this Subtype. Further, we extend the
set of eighteen atomic Subtypes with pairs of Sub-
types commonly triggered together by one Nugget
(seen at least one hundred times in the labeled
data), e.g. ATTACK|DIE as in

Rabin’s

ATTACK|DIE,ACTUAL︷ ︸︸ ︷
assassination in 1995

For all languages, we obtain a total of twenty-
two Subtypes: the atomic Subtypes, the NULL-
Subtype, and three composite Subtypes. For
all languages, two of the retained compos-
ite Subtypes are ATTACK|DIE and TRANSFER-
MONEY|TRANSFER-OWNERSHIP. The third one
is ATTACK|INJURE for English and Spanish and
DIE|INJURE for Chinese.

Realis For each Event Nugget, we only learn to
predict one Realis value that is the most common
in the data. Like with Subtypes, we only predict
one Realis value even if a Nugget triggers multiple
Events with that Realis value. This leaves us with
four Realis labels: ACTUAL, GENERIC, OTHER,
and NULL.

3 Datasets

In our choice of labeled data, we follow closely
last year’s participants. For simplicity, we use
only Rich ERE annotations. Thus, one source
is LDC2017E02, which is a compilation of TAC
KBP EN training and evaluation datasets for
years 2014, 2015, and 2016. From this compi-
lation, we only take 2015 and 2016 data. The
other source is DEFT Rich ERE annotations:
for English, LDC2015E29 and LDC2015E68;
for Spanish, LDC2015E107, LDC2016E34,
and LDC2017E51; for Chinese, LDC2015E78,



Lang Train set Dev set
DEFT Rich ERE LDC2017E02 LDC2017E02

eng LDC2015E29,
LDC2015E68

2015: all,
2016: 69 docs

2016: 100 docs

spa LDC2015E107,
LDC2016E34,
LDC2017E51

2015: all,
2016: 119 docs

2016: 50 docs

cmn LDC2015E78,
LDC2015E105,
LDC2015E112

2015: all,
2016: 97 docs

2016: 70 docs

Table 2: Overview of the datasets and the training
/ development set splits used in this paper.

Lang # tokens # Event tokens, %
eng 553.0K 18.1K 3.3%
spa 238.9K 6.5K 2.7%
cmn 331.0K 6.9K 2.1%

Table 3: Labeled data statistics: Overall number
of tokens; number and percentage of tokens form-
ing Event Nugget Spans (Event tokens).

LDC2015E105, and LDC2015E112. From
LDC2015E78, we only use the original Chinese
data and ignore English translations. For each
language, non-Event tokens account for over 97%
of all the text (Table 3).

For development, we draw samples of around
12% from LDC2017E02’s 2016 evaluation data
(Table 2) such that half of the development doc-
uments are newswire text and the other half—
discussion forms.

We only use Event Nugget annotations, i.e.
Trigger spans and Event Mention Type/Subtype
and Realis annotations. Thus, unlike other teams,
e.g. Lu and Ng (2016), our models do not rely
on event argument annotations in any way. We
also leave out Events of Subtypes other than the
eighteen Subtypes of the 2017 version of the Task,
unlike Nguyen et al. (2016b).

4 Feature Encoding

We preprocess all documents with the Stanford
CoreNLP toolkit 3.8.0 (Manning et al., 2014). For
each token, we extract the following features:

1. the token itself,

2. its Penn TreeBank part-of-speech (POS) tag,

3. the Universal Dependency relation (UD) la-
bel of this token,

4. the set of UD labels that govern the depen-
dents of this token—following Nguyen et al.
(2016b),

5. the binary text type feature—“newswire” or
“discussion forum”—following Reimers and
Gurevych (2015), and

6. the binary feature that signals whether the to-
ken is in a quote region.

Let x = x1, . . . , xn be a sentence of n tokens and
y = y1, . . . , yn the sequence of their labels, where
each label yt is from some set of labelsY . We shall
now define our feature function g(t,x,Φ) that pro-
duces a token representation st ∈ R2H for each xt.
This function g first embeds the features extracted
for each xt and concatenates the resulting embed-
dings, as well as some n-hot feature representa-
tions, into it. Next, the sequence i1, . . . , in of such
vectors is used as input to a bidirectional RNN.
Thus, st is a global-context–aware representation
of xt (hence, the dependence of g on the entire
x), enriched with information from all preceding
and subsequent tokens. Φ are the parameters of g
(as well as parameters of the model), which com-
prise all trainable embedding parameters and the
parameters of the RNN.

For each token xt, let it be the concatenation of
the following vectors:

1. the pre-trained token embedding tt ∈ RT ,
that we do not update during training—
following Marcheggiani et al. (2017),

2. the trainable token embedding et ∈ RE ,

3. the trainable POS embedding ot ∈ RO,

4. the trainable UD label embedding ut ∈ RU ,

5. the n-hot vector dt ∈ {0, 1}D representing
the set of UD labels (Item 4 in the feature
list), and

6. vector at ∈ {0, 1}2 of text type and quote
region features (Features 5 and 6).

To produce s1, . . . , sn for each of the tokens in the
sentence, we encode i1, . . . , in with a bidirectional
LSTM (Graves and Schmidhuber, 2005):

s1, . . . , sn = BiLSTM(i1, . . . , in) (1)

The way we represent tokens—our choice of
features and how we encode them—is, therefore,
fairly standard and is influenced by semantic role
labeling literature and successful work on EN.



5 Classifiers and Loss Functions

Our classifiers predict the label of a token inde-
pendently of the labels of other tokens in the sen-
tence. This is also the case for joint models of
Run 3, which, for each xt, predict a structured la-
bel that is independent from all other labels in the
sentence.

In the kind of multi-class classifier that appears
in our pipeline systems, the score of label y ∈ Y
for input token xt with representation st is given
by

fplain(xt, y) = w>y st (2)

wy is a parameter vector for y and is in the model
parameters Θ, which also include the parameters
Φ of the feature function g.

Given xt, the classifier predicts

ŷ = arg max
y∈Y

fplain(xt, y) (3)

Instead of the more common log loss, we train
all our classifiers with the softmax-margin loss
(Gimpel and Smith, 2010a), which allows for in-
corporating extra cost for specific types of error.

Softmax-margin loss Softmax-margin aug-
ments the score of label y for input token xt
(Eq. 2) with a cost of choosing y when the true
label is yt:

f(xt, y) = w>y st + cost(yt, y) (4)

We use the following cost function to assign extra
cost to y when the truth is yt:

cost(yt, y) =


0 if yt = y,

P if yt = NULL ∧ y 6= NULL,

R if yt 6= NULL ∧ y = NULL,

T if yt 6= NULL 6= y ∧ yt 6= y.
(5)

and P,R, T ∈ R≥0. Thus, we add cost P when-
ever choosing y would result in a false-positive er-
ror, cost R—a false-negative error, and cost T—a
wrong non-NULL label prediction (=entity error)
(Gimpel and Smith, 2010b), which occurs when
the classifier correctly identifies the token as trig-
gering an Event but assigns it a wrong Subtype or
Realis label.

The loss function that we maximize has the fol-
lowing familiar form:

logL(xt, yt; Θ) = f(xt, yt)−log
∑
y∈Y

exp f(xt, y)

(6)

Our classifiers typically incur a large additional
loss for false negative errors. In this way, we com-
pensate for the infrequency of Event tokens in the
data (Table 3).

Joint Subtype-Realis learning Run 3 ensem-
bles single classifiers that learn to jointly predict
Subtype and Realis labels. In such a classifier,
Subtype labels y ∈ Y and Realis labels v ∈ V
are scored separately but from the same token rep-
resentation st. Additionally, a set of label compat-
ibility parameters A ∈ R|V|×|Y| is learned:

fplain(xt, y, v) = w>y st + u>v st + Av,y (7)

and wy,uv, and A are in Θ. Given an input token
xt, the classifier predicts

ŷ, v̂ = arg max
y∈Y,v∈V

fplain(xt, y, v) (8)

At training, the score is augmented with cost:

f(xt, y, v) =
(
w>y st + costSu(yt, y)

)
+
(
u>v st + costRe(vt, v)

)
+ Av,y

(9)
And the loss that we maximize is given by

logL(xt, yt, vt; Θ) = f(xt, yt, vt)

− log
∑
y∈Y

∑
v∈V

exp f(xt, y, v) (10)

The model lets the choices of the Realis and
Subtype attributes for token xt influence each
other. First, the token representation st is learned
to score both Subtype and Realis labels for xt.
Second, the label dependency is explicitly mod-
eled with the label compatibility parameters A,
and the model normalizes over all Subtype and Re-
alis label pairs.

The cost functions costSu (for Subtype) and
costRe (for Realis) are like cost in Eq. 5 but with
possibly different P,R, and T values.

Pipeline of classifiers Run 2 ensembles over
pipelines of two classifiers: a Subtype classifier
followed by a Realis classifier. Each classifier
learns its own token representation st. The Sub-
type classifier is like in Eq. 3 trained with the loss
in Eq. 6. Somewhat unconventionally, instead of
a simple Realis classifier that conditions on (i.e.
gets as part of input) the Subtype label ŷ produced
by the Subtype classifier, we train a joint Subtype-
Realis model and output the Realis label of the



Hyperparameter Value
dim. T of trainable token embeddings 100
dim. E of fixed token embeddings 300
dim. O of POS tag embeddings 20
dim. U of UD label embeddings 20
dim. H of LSTM hidden layer 200
LSTM depth 1
word dropout .25
precision cost P 0
recall cost R 10
entity cost T 5

Table 4: Hyperparameter values of all single mod-
els in this paper.

highest scoring non-NULL structured label for that
xt. This strategy appears to work better than con-
ditioning on the Subtype label ŷ in Eq. 8 and find-
ing the argmax over v ∈ V .

6 Post-processing

We apply some post-processing to the output of
our models. If a contiguous sequence of tokens
are assigned the same label, we take the whole se-
quence to be the Span of one Nugget with that la-
bel. In case a sequence of tokens forming an Event
Nugget and a following token have the same Sub-
type but different Realis labels, we merge them
into one Event Nugget and assign it the Realis of
the sequence unless the token is a verb, in which
case the Nugget gets the Realis of the token.

7 Ensembling

To fight high variance, we ensemble five single
systems: five joint models for Run 3 and five
pipelines for Run 2. For each Event Nugget de-
tected by any of the single systems, we calculate
its support—the number of systems that predict it.
We treat minimal support as a hyperparameter that
we tune on the development set: For the ensemble
to predict an Event Nugget, its support should be
at least as high as the required minimum (e.g. two
systems out of five).

8 Training and Hyperparameters

We apply the same set of hyperparameter values to
all single models and all languages that we find to
work reasonably well for English (Table 4). Due
to time restrictions, we could only conduct a very

Lang Run 1 Run 2 Run 3
# ep. like support

eng 7 Run 3 3 2
spa 8 Run 3 3 3
cmn 5 Run 2 3 2

Table 5: Run- and language-specific configura-
tions. Run 1: number of epochs before training
termination, the run whose configuration (=type
of single system and minimal support) it inherits.
Run 2 and 3: minimal support (§7).

limited, heuristic-driven search for satisfactory hy-
perparameter values and rely a lot on the literature.

We use LSTMs with peephole connections (Gr-
eff et al., 2017) and a forget state set to 1 − it,
where it is the input gate. All the models in our
submission contain a bug in the implementation of
the bidirectional LSTM, which has a mixed effect
on test performance (see Figure 2).

We opt for the off-the-shelf word2vec embed-
dings: the GoogleNews embeddings of Mikolov
et al. (2013) for English, Spanish embeddings
trained on an assortment of corpora (Cardellino,
2016),1 and Chinese embeddings trained on
Wikipedia.2 We do not experiment with the choice
of embeddings, although more syntax-aware em-
beddings are observed to positively impact perfor-
mance on this task (Reimers and Gurevych, 2015).

Model parameters Θ are initialized as recom-
mended in Glorot and Bengio (2010). All single
models are trained with Adadelta (Zeiler, 2012).
We train with minibatches of ten sentences. In
Runs 2 and 3, all single models are trained for
thirty epochs with early stopping after five epochs
of patience. Models of Run 1 are trained with-
out early stopping for the number of epochs that
we heuristically compute as follows. For each lan-
guage, we take the average number of epochs that
the single models of the run with the best develop-
ment set performance take to stop, add to this one
population standard deviation, and round. In this
way, we train joint models for English and Span-
ish for seven and eight epochs respectively, and
pipelines for Chinese for five epochs.

The minimal support hyperparameter, which
enters the ensemble computations, is set to max-
imize the performance on the development set for

1http://crscardellino.me/SBWCE/
2https://github.com/Kyubyong/

wordvectors

http://crscardellino.me/SBWCE/
https://github.com/Kyubyong/wordvectors
https://github.com/Kyubyong/wordvectors


Span Sub Realis Sub+Real
English

67.27 56.19 48.33 39.73
59.95 50.37 47.48 39.28
59.63 50.14 47.42 39.24
59.16 48.60 42.47 36.81

Spanish
50.17? 42.81? 36.81 30.95
31.10 23.25 17.60 12.69

Chinese
54.74 50.64 43.37† 39.97†
52.85 46.76 35.35 32.43
49.76 46.45 35.19 31.51
47.12 42.14 34.58 31.17

Table 6: Official results: Top four results for En-
glish and Chinese, all EN Track results for Span-
ish. Our results are marked in bold. Star (?) marks
results by Run 2, dagger (†) results by Run 3, all
other scores are from Run 1.

Lang Run Span Sub Real Sub+Real
1 59.16 48.60 48.33 39.73
2 58.39 48.29 44.31 36.69eng
3 57.27 47.66 46.67 38.96
1 49.00 41.17 36.81 30.95
2 50.17 42.81 7.68† 6.46†spa
3 47.89 39.80 34.21 28.79
1 54.74 50.64 42.52 39.66
2 53.09 49.26 40.58 37.88cmn
3 53.71 48.97 43.37 39.97

Table 7: Test set performance of our runs. Due
to a bug, Spanish Run 2 Realis labels could not be
mapped correctly, hence the low scores (†).

Runs 2 and 3. It is set to two for English and Chi-
nese joint-model ensembles and three for all the
rest. For the Run 1 ensembles, we choose the same
minimal support as in the run that they inherit their
configuration from (Table 5).

All the models are implemented in DyNet (Neu-
big et al., 2017).

9 Results and Discussion

Official results All in all, ten teams submit En-
glish runs, three—Chinese, and two—Spanish to
the EN Task this year. One of the Cold Start sub-
missions, projected to the EN evaluation dataset,
achieves competitive scores in the EN Track for

Chinese. Table 6 shows how our models rank
compared to the other participants.

Our models are overall best in all three lan-
guages and are best in every sub-part of the task
except English Span and Subtype (called “Plain”
and “Type” respectively in the official results).
These high scores are due to Run 1 with the excep-
tion of Chinese Realis and Subtype+Realis (Run 3
is better) and Spanish Span and Subtype (Run 2 is
better).

The risky Run 1 strategy pays off well (Ta-
ble 7). We examine this risk more closely in a
post-submission experiment.

The official results for English show that we are
particularly strong in predicting Realis and com-
bining Realis labels with Subtype labels. We at-
tribute the latter to joint modeling, which com-
pensates for our relatively weak performance on
Subtype. We observe this effect when comparing
our Runs 2 and 3 (Table 7, English and Chinese):
The specialized Span/Subtype classifier performs
strongly on Subtype, but adding to it Realis labels
from a strong joint model results in worse perfor-
mance on Realis and overall. We relate this effect
to a mismatch between the models in a pipeline
(including the effect of performing well, but on
slightly different subsets of the data, which would
be possible given the rather low inter-annotator
agreement on this task (Reimers and Gurevych,
2015)). Whether this is indeed the case and
whether conditioning on the Subtype label would
help is left to future work. An alternative solution
to this problem could also be a different pipelining
strategy—by first ensembling and then pipelining.

Post-submission experiments We run post-
submission experiments to gain a better insight
into (i) how our choices of features, architecture,
and the objective function affect model perfor-
mance, (ii) how much improvement we gain with
ensembling, and (iii) how reliable the Run 1 strat-
egy is.3

Surprisingly, many of the additions do not im-
prove performance on average (Figure 2). Except
for Spanish pipeline systems, all morpho-syntactic
features at best have no positive impact (-POS, -
DEP, -GOV). Even switching off all of them to-
gether (-SYN) does not harm performance. Pre-
computed fixed word embeddings (-FE) are cru-

3Somewhat unfortunately, the experiments feature
LSTMs without peephole connections and with the stan-
dardly defined forget state.



Figure 2: Ablation experiments: Effects of
modifying the model on Subtype+Realis test
set F1-score. Averages over five single mod-
els. Joint models are green circles, pipelines
are yellow hexagons. Error bars show pop-
ulation standard deviation. REF=configuration
from submission (Table 4) with corrected Bi-
LSTM, –POS=no POS embeddings, –DEP=no
UD label embeddings, –GOV=no set of depen-
dents’ UD labels, –SYN=no morpho-syntactic
features, –WD=no word-dropout, –LSTM=no Bi-
LSTM, +LSTM∗=buggy BiLSTM, –TE=no train-
able token embeddings, –FE=no pre-trained fixed
embeddings, –CST = no costs, +CST2=costs 5 for
recall errors and 2 for entity errors.

Figure 3: Effect of minimal support parameter
(x-axis) on the ensemble’s Subtype+Realis test
set F1-score. F1-score for joint-model ensem-
bles with different support (thick); mean F1-score
(thin) and population standard deviation (shaded
region) for the same joint models.

cial for all three languages. Interestingly, proper
BiLSTM encoding of the sentence adds a lot to
English models, but less so for Spanish and Chi-
nese. Although we employ word dropout in our
submission (Iyyer et al., 2015; Marcheggiani et al.,
2017), the ablation experiments suggest that it
rather harms performance for English, but helps
quite a lot for Spanish. Despite the gains from
placing high costs on recall and entity errors, we
now observe that lower costs achieve even better
results for all languages.

We also note that, in our initial experiments

Figure 4: Training with all data (Run 1) vs early
stopping on the example of joint-model ensembles
with different minimal support. Subtype+Realis
test set F1-score for the ensembles after each train-
ing epoch (thick); the score after the last estimated
training epoch (orange diamond); the same ensem-
ble trained with early stopping (thin).

with English Span and Span/Subtype classifiers,
a higher number of LSTM layers and more hidden
units did not seem to influence performance much,
contrary to our expectations.

We take a closer look at the effects of ensem-
bling. We compute all ensembles over five joint
models and plot their F1-scores as the function of
minimal support (Figure 3). As expected, ensem-
bles with support values two and three are con-
sistently better than the average single model, but
gains are small for Spanish, whose models vary a
lot in performance.

Next, we consider how well we estimate the
number of epochs for single models in Run 1
(Figure 4). Whereas Spanish shows an expected
learning curve, English and Chinese quickly reach
a high test set performance and then fluctuate
strongly within some constant range. Therefore,
estimating an optimal fixed number of learning
epochs from the development set is difficult. Our
motivation for the Run 1 strategy was that Span-
ish and Chinese training data are scarce and so
not losing data on a development set would likely
help. Both the Chinese results in Figure 4 and our
official results for Chinese indicate that using all
labeled data does not compensate for a suboptimal
choice of training termination, which is very likely
with the fluctuation that we observe. We leave it
to future work to establish whether this problem
could be resolved by changing the training.

10 Related Work

Detecting and correctly classifying expressions
that trigger Events is central to event extrac-
tion. The traditional solution to the EN Task



is a pipeline of classifiers, one for each of the
Event Nugget properties (Span, Subtype, Realis)
trained on ground truth and propagating their la-
bels down the pipeline at prediction time (Reimers
and Gurevych, 2015; Ahn, 2006). A common
variation to this is to directly predict Subtypes
plus the NULL-Subtype and then deterministically
derive Spans from the predicted Subtype labels
(Lu and Ng, 2016; Nguyen et al., 2016b). As
for features, pre-trained word vectors and RNNs
have long been successfully applied to this task
(Reimers and Gurevych, 2015).

There has been a lot of interest in applying
joint learning to event extraction (Li et al., 2013;
Araki and Mitamura, 2015; Nguyen et al., 2016a;
Yang and Mitchell, 2016). The detection of Event
Nugget Spans and Subtypes benefits from the joint
event extraction and argument identification and
classification. To the best of our knowledge, we
are the first to propose a joint model for the whole
of the EN task.

11 Conclusion

We present our structured prediction RNN ap-
proach to the trilingual TAC KBP 2017 Event
Nugget detection task. Our systems produce the
best micro-average F1-scores for the overall (Sub-
type+Realis) task in all the languages: English
(39.7), Spanish (31.0), and Chinese (40.0). Our
contribution is a model that jointly predicts the
structured Subtype–Realis label for each token,
but independently of the labels of other tokens.
Global context enters our classifier mainly via the
bidirectional LSTM encoding of the sentence. We
show that the softmax-margin loss with extra costs
for recall errors is an effective objective, given that
Event tokens are highly infrequent. We gain con-
sistent increases in performance by model ensem-
bling. Although we employ morpho-syntactic fea-
tures, our post-submission experiments indicate
that they largely do not help.

Acknowledgements

We would like to thank Luzia Roth and Tilia Ellen-
dorff for their work. Peter Makarov has been sup-
ported by European Research Council Grant No.
338875.

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and
Reasoning about Time and Events. ACL.

Jun Araki and Teruko Mitamura. 2015. Joint event trig-
ger identification and event coreference resolution
with structured perceptron. In EMNLP.

Cristian Cardellino. 2016. Spanish Bil-
lion Words Corpus and Embeddings.
http://crscardellino.me/SBWCE/.

Kevin Gimpel and Noah A Smith. 2010a. Softmax-
margin CRFs: Training log-linear models with cost
functions. In NAACL-HLT .

Kevin Gimpel and Noah A Smith. 2010b. Softmax-
margin training for structured log-linear models.
Technical report.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks 18(5).

Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R
Steunebrink, and Jürgen Schmidhuber. 2017. Lstm:
A search space odyssey. IEEE transactions on neu-
ral networks and learning systems .

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In ACL-JCNLP.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In ACL.

Jing Lu and Vincent Ng. 2016. UTD’s event nugget
detection and coreference system at KBP 2016. In
Proceedings of the Ninth Text Analysis Conference.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In ACL.

Diego Marcheggiani, Anton Frolov, and Ivan Titov.
2017. A simple and accurate syntax-agnostic neural
model for dependency-based semantic role labeling.
In CoNLL.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

http://crscardellino.me/SBWCE/
http://crscardellino.me/SBWCE/
http://crscardellino.me/SBWCE/


Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, et al. 2017. DyNet: The
dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016a. Joint event extraction via recurrent
neural networks. In HLT-NAACL.

Thien Huu Nguyen, Adam Meyers, and Ralph Grish-
man. 2016b. New York University 2016 system for
KBP event nugget: A deep learning approach. In
Proceedings of Ninth Text Analysis Conference.

Nils Reimers and Iryna Gurevych. 2015. Event nugget
detection, classification and coreference resolution
using deep neural networks and gradient boosted de-
cision trees. In Proceedings of the Eighth Text Anal-
ysis Conference.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of LSTM-networks for sequence tagging. In
EMNLP.

Bishan Yang and Tom Mitchell. 2016. Joint extraction
of events and entities within a document context. In
NAACL-HLT .

Matthew D Zeiler. 2012. ADADELTA: an adap-
tive learning rate method. arXiv preprint
arXiv:1212.5701 .


