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Abstract 
 Drug labels contain detailed information about the drugs including their safety 
concerns which are regulated by the United States Food and Drug Administration (FDA). 
Adverse drug reactions (ADR) are adverse reactions associated with a specific drug. 
Automatic extraction of ADRs could help FDA greatly regulate drug safety. In this study, 
we employed an integrated approach of machine learning (ML)-based and dictionary-
/rule-based methods to recognize ADR terms and normalize these terms to MedDRA 
Preferred Terms. The machine learning approach was used for the identification of the 
entities and is based on a recently proposed deep learning architecture. The model 
includes bi-directional Long Short-Term Memory (Bi-LSTM), a Convolutional Neural 
Network (CNN), and Conditional Random Fields (CRF). Alternatively, a dictionary- and 
rule-based approach was also used to identify ADR terms. MedDRA terms were added 
as a dictionary to SciMiner, our in-house text-mining system, and multiple rules for term 
expansion and exclusion to increase coverage and accuracy were implemented. The 
best performance was achieved using a combined approach: ADRs were first identified 
by the ML-based approach and then normalized to MedDRA Preferred Terms by the 
dictionary- and rule-based approach. Our system achieved 76.97% F1 score on the 
entity detection task and 82.58% micro-averaged F1 score on the ADR normalization 
task in the TAC 2017 ADR challenge. 

Introduction 
 Pharmacovigilance is defined as “the science and activities relating to the 
detection, assessment, understanding and prevention of adverse effects or any other 
drug problem” (World Health Organization and others, 2002). It is impossible to know all 
possible adverse events of a particular drug, since generalizability of the clinical trials 
are low, sample sizes are small, and duration is short. FDA uses the Adverse Event 
Reporting System (FAERS) to detect adverse events. FEARS includes mandatory 
reports from pharmaceutical companies and reports that have been submitted to 
MedWatch directly. ADRs are still in the top 10 leading causes of death, and cost 
approximately $75 billion annually in the United States (Ahmad, 2003). 
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In addition to using medical reports (Gurulingappa, et al., 2011), it has been 
proposed to use data from social media (Leaman, et al., 2010), since users tend to 
discuss their sicknesses, treatments and also prescribed drugs and their effects in social 
media platforms. These discussions are not only confined to social networks specifically 
dedicated to health-related issues, but they also exist in generic platforms which could 
all be used for multi-corpus training to increase accuracy (Sarker & Gonzales, 2015). 
Preparing a lexicon (Leaman, et al., 2010) for detection of ADRs requires a lot of manual 
work and also limits a system’s effectiveness to the extent of the lexicon. Nikfarjam and 
Gonzalez (Nikfarjam & Gonzalez, 2011) used syntactic and semantic patterns to remedy 
the shortcomings of lexicon-based approaches. Detailed information on ADR extraction 
with different techniques on various data sources is available in (Harpaz, et al., 2014) 
and (Karimi, et al., 2015). 
 

The current approach for FEARS case report review requires manual reading of 
the text of the drug labels in order to determine whether a candidate ADR has been 
reported before or not. The automation of the extraction of the ADRs from drug labels 
would increase the efficiency of this process. 

 
The TAC-ADR 2017 challenge targeted the automatic extraction of ADRs from 

drug labels and normalization of them through MedDRA (Medical Dictionary for 
Regulatory Activities) (Brown, et al., 1999), which is a dictionary for medical terminology. 
We participated in Task 1 (Extracting ADRs and related mentions from drug labels) and 
Task 4 (Linking the extracted ADRs to MedDRA terms). Mention can be defined as the 
portion of a text that corresponds to a certain entity such as an ADR. For example, given 
the sentence “Exclusive of an uncommon, mild injection site reaction, no adverse 
reactions to 11 C-choline have been reported.” obtained from the drug label of choline, 
“injection site reaction” is an ADR mention and “mild” is a severity mention. While Task 1 
addressed identifying these mentions, Task 4 targeted the normalization of the ADR 
mentions to MedDRA terms. The MedDRA preferred term for the ADR in the sentence 
above is "Injection site reaction" and its MedDRA preferred term ID is "10022095". 

 
We investigated the integration of machine learning and dictionary/rule-based 

methods. Our best results were achieved by an integrated system that is based on a 
deep learning model for entity mention extraction and a dictionary/rule-based method for 
the normalization of the extracted ADRs to MedDRA terms. Our system and results are 
described in the following sections.  

System Description 
 A high-level description of our integrated deep learning and dictionary/rule-based 
approach for entity detection and normalization is illustrated in Figure 1.  
 

We investigated the performance of using both a machine learning approach and 
a dictionary/rule-based approach for Task 1 of the TAC-ADR 2017 challenge, whose 
goal was to extract entity mentions in drug labels such as ADR, drug class, animal, 
severity, factor, and negation. Mentions other than ADRs have only been annotated by 
human annotators, if they are related to any of the ADRs in the drug label. For example, 



in the sample sentence provided in the Introduction section, the severity mention “mild” 
has been annotated, since it defines the severity of the ADR “injection site reaction”. If 
“mild” occurs in a drug label in another context such as the symptoms of a disease being 
mild, then it is not annotated, since it is not related to an ADR.  
 

 
Figure 1. Overall workflow. Pre-processing only needed when Deep Learning architecture is used 

 
 We also participated in Task 4 of the challenge, which aimed to normalize the 
positive ADRs detected in Task 1 to their corresponding MedDRA terms. For ADR 
normalization we extended and used our in-house literature mining program SciMiner 
(Hur, et al., 2009), which is a dictionary- and rule-based literature mining platform for 
identification of genes and proteins in a context-specific corpus. MedDRA preferred 
terms (PT) and lowest level terms (LLT) were added to SciMiner, which normalized the 
positive ADRs to MedDRA preferred terms. MedDRA has the medical terminology 
hierarchy arranged from very specific to very general, where LLT is the most specific 
layer and PT is on top of it. 
 

The machine learning component operates on sentence level and requires the 
input to be tokenized. Therefore, the first step of our system was to transform the drug 
labels, given in XML format, to sentence-split and tokenized format. The NLTK package 
(http://www.nltk.org) was used for sentence splitting and tokenization. Since the 
documents were not well formatted and contained tables, a Python script was internally 
prepared to detect text pieces and table parts. These initial preprocessing operations 
increased the performance of the sentence splitter. 
 

The machine learning and dictionary-based components of the system are 
described in more detail in the following subsections. 
 
Neural Network Architecture 
 A deep learning model designed for extracting NERs, which makes use of Bi-
LSTM – CNN – CRF  (Ma & Hovy, 2016), was used for the extraction of ADR mentions. 
We used the implementation proposed by (Reimers & Gurevych, 2017) which has minor 
differences from (Ma & Hovy, 2016). The model works on the sentence level, where 
every token is represented by a vector. Here, we describe the network starting from the 
creation of the input vectors to the prediction of the entity tags, which are calculated for 
every token of a given sentence. 

 
Combined Word Embeddings 
 Every token in a given sentence was transformed into a vector before being fed 
into the model. These vectors consist of three parts, namely character embeddings, 
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word embeddings, and case embeddings. The character embeddings were generated 
by a convolutional neural network (CNN) that runs over the characters of a given token. 
This representation has been shown to be powerful in encoding morphological 
information (Ma & Hovy, 2016), which we expect to be useful in the biochemical domain 
as well. At the first step, the tokens were transformed into their matrix representation by 
concatenating their character embeddings. Since CNNs work on fixed length input, all 
matrices were filled with padding to the length of the longest word in the vocabulary. 
Filter size was set to be 3 with a stride value of 1. In total 30 filters with these 
parameters were used for each input token in the CNN architecture. After using a max-
pooling operation, a vector of length 30 was generated for each token. Figure 2 
illustrates the workflow of the generation of character embeddings using the CNN 
component. 
 

 
 

Figure 2. Character representation generation with CNN. 

The word embeddings were generated by the Word2Vec tool (Mikolov, et al., 
2013) in order to incorporate semantic information of words, since these representations 
had been shown to be effective in  capturing semantic meanings (Mikolov, et al., 2013). 
The performance is expected to increase when these embeddings are generated from a 
corpus that is more related to the task; therefore, we used pre-trained embeddings that 
were generated using PubMed as the training corpus (Pyysalo, et al., 2013). These 
vectors of length 200 were appended to the character embeddings created by CNN. 
While looking for the vector representation of a token, our system also looked for lower 
cased and normalized versions in order to reduce out-of-vocabulary (OOV) words. 
However, it should be noted that this process decreased the number of OOV words, but 
we also lost the actual casing information of tokens. In order to remedy this loss, one-hot 
encoded case embeddings with length 8 were appended to the word embedding 
vectors, obtaining the combined word embedding vectors.  

 



The Bi-LSTM and CRF Components 
 
 
 

𝑖𝑖𝑡𝑡 =  𝛼𝛼(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑖𝑖) 
𝑓𝑓𝑡𝑡 =  𝛼𝛼�𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑓𝑓� 
�̃�𝑐𝑡𝑡 =  𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑐𝑐) 
𝑐𝑐𝑡𝑡 =  𝑓𝑓𝑡𝑡 ∗  𝑐𝑐𝑡𝑡−1 +  𝑖𝑖𝑡𝑡 ∗  �̃�𝑐𝑡𝑡 
𝑜𝑜𝑡𝑡 =  𝛼𝛼(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑜𝑜) 
ℎ𝑡𝑡 =  𝑜𝑜𝑡𝑡 ∗ tanh(𝑐𝑐𝑡𝑡)  

 

 
 

Our model used a long short-term memory (LSTM) (Hochreiter & Schmidhuber, 
1997) component, which takes as input the combined word embeddings in order to 
model the context information for each word as shown in Figure 3. LSTM is from the 
family of Recurrent Neural Networks (RNNs), which are designed to learn patterns within 
sequences (Hochreiter & Schmidhuber, 1997). Even though these components are 
theoretically capable of learning long distance dependencies, it is hard to train them with 
gradient descent due to the problems of gradient vanishing or explosion (Bengio, et al., 
1994). LSTMs are better in dealing with the gradient vanishing problem compared to the 
vanilla RNN, but they cannot solve the gradient explosion problem. As a solution to the 
gradient explosion problem, our model used gradient normalization (Pascanu, et al., 
2013) with the value of 1, since it has been shown to be effective in the NER task 
(Reimers & Gurevych, 2017). 
 

Figure 3. LSTM Component 

Figure 4. Bi-LSTM component with variational dropout (depicted by colored & dashed connections) 



For detecting NERs, it has been shown to be an effective approach to have prior 
knowledge about the rest of the sentence well as the beginning. Two recent studies 
(Lample, et al., 2016; Ma & Hovy, 2016) used two LSTMs which run on opposite 
directions on the input sequences. Therefore, as shown in Figure 4, the outputs of the 
two LSTMs are concatenated. Two of these Bi-LSTM components are stacked. The first 
Bi-LSTM has 100 recurrent units and the second one has 75 recurrent units. 
 
 Dropout (Srivastava, et al., 2014) is a way to prevent overfitting in neural 
networks. However it has been shown to be difficult to apply on RNN layers (Gal & 
Ghahramani, 2015). Hence, variational dropout (Gal & Ghahramani, 2015) has been 
applied in the Bi-LSTM layers. This method applies the same mask through time in 
recurrence, which is shown by colored dashed arrows in Figure 4. Dropout of 0.25 was 
applied in our Bi-LSTM components. 
 

The last layer is the Conditional Random Fields (CRF) (Lafferty, et al., 2001), 
which does the prediction of the token tags. The TAC-ADR dataset contained non-
contiguous mentions such as “Interstitial infiltration ... of the chest” with 10 words, but 
CRF is expected to work better if all mentions are contiguous.  
 

  
 
 
The CNN Bi-LSTM and CRF models are combined and used as the final deep 

learning model as shown in Figure 5. The NADAM (Dozat, 2016) optimization technique 
is used in the training of the combined model.  
 

Figure 5. Deep learning model for NER 



SciMiner 
 In parallel to the neural network-based approach above, we employed a 
dictionary- and rule-based Named Entity Recognition (NER) identification approach. We 
used SciMiner written in Perl, which was originally developed as a web-based literature 
mining platform for identifying genes and proteins in biomedical literature (Hur, et al., 
2009). SciMiner has been expanded to identify various biomedical ontologies such as 
Vaccine Ontology (VO) and Interaction Network Ontology (INO), developed by our 
group, resulting in specific variations of SciMiner: INO-SciMiner (Hur, et al., 2015), VO-
SciMiner (Hur, et al., 2011),  and E-coli-SciMiner (Hur, et al., 2017). 
 

In this study, we added the MedDRA preferred and lowest level terms (PT and 
LLT, respectively) to SciMiner. Manual review of these terms was also performed to 
identify such terms that are unlikely to be ADRs such as various cancers. Various rules 
for term expansion as well as exclusion to increase coverage and accuracy were 
implemented. For example, Perl library Lingua::EN was used to expand the base ADR 
dictionary allowing the inclusion of additional plural or singular forms, when only one 
form was included in the base dictionary. SciMiner-based approach was also used for 
normalizing the positive ADR terms, identified by the deep learning-based approach in 
the above section, to their respective MedDRA PTs.  

Experiments and Results 
Dataset 

The training set consisted of XML formatted 101 drug label files. These XML files 
contained raw texts with sections, mentions, relations and normalizations for reactions. 
Our team, named as “CONDL”, participated in the first and fourth tasks of the TAC-ADR 
2017, which have the aims to extract the mentions from a given drug label (Task1) and 
normalize them to appropriate MedDRA PTs (Task 4). SciMiner worked on the raw text 
directly, whereas the deep learning model worked at the sentence level; therefore, the 
text had to be split first as the initial process. We used NLTK (Bird, et al., 2009) 
sentence splitter and tokenizer.   
 

We used the NLTK tokenizer (Bird, et al., 2009) to identify the tokens in the 
sentences and transformed every drug label file into the CoNLL format. The sentences 
were separated by an empty line and every token was written on a separate line.  An 
example sentence is shown in Table 1 and its CoNLL format is shown in Table 2, where 
every line consists of 6 columns and starts with the token itself. The second column 
holds the tag type of the token, which was encoded with BIO2 (Sang & Veenstra, 1999) 
chunking representation. “B” denotes that the token is the beginning of an entity 
mention, “I” denotes that the token is inside of a mention, and "O" (Outside) indicates 
that the token is not part of a mention. For example, the tags of an ADR term 
"hypersensitivity reactions" are "B-ADR I-ADR" according to this representation. The 
third column holds the Part-Of-Speech (POS) values of each token, which was not 
utilized by the current model. The following columns show the location of the token 
within a label. The first one of those is the id of the section. The second one is the start 
position of the token within the section and the last one shows the length of the token.  
 



Normalization was done by SciMiner, which works on the strings of the detected 
ADR mentions. 
 

Table 1. Example sentence for drug label “choline” 

 
 Raw Text BIO encoding POS tag Section Offset Length 
CoNLL format 
(BIO encoding) 

Long-term O JJ S2 2237 9 
cumulative O JJ S2 2247 10 
radiation O NN S2 2258 9 
exposure O NN S2 2268 8 
is O VBZ S2 2277 2 
associated O VBN S2 2280 10 
with O IN S2 2291 4 
an O DT S2 2296 2 
increased O VBN S2 2299 9 
risk B-FAC NN S2 2309 4 
for O IN S2 2314 3 
cancer B-ADR NN S2 2318 6 

. O . S2 2324 1 
Table 2 Transformation of sentence in Table 1 

 
Results 
 For the workshop evaluation, we submitted three sets of results: CONDL1, 
CONDL2, and CONDL3. Table 3 summarizes the approaches taken in each set and 
Table 4 shows the obtained results. 
 

Set Named Entity Recognition ADR Normalization 
CONDL1 ML SciMiner 

CONDL2 SciMiner SciMiner 

CONDL3 SciMiner + non-ADRs from ML SciMiner 

Table 3. Summary of approaches 

Raw Text Long-term cumulative radiation exposure is associated with an increased risk 
for cancer. 

Related Mentions <Mention id="M10" section="S2" type="Factor" 
         start="2309" len="4" str="risk" /> 
<Mention id="M11" section="S2" type="AdverseReaction" 
         start="2318" len="6" str="cancer" /> 

Related Reaction <Reaction id="R4" str="cancer"> 
  <Normalization id="R4.N1" 
                 meddra_pt="Neoplasm malignant" 
                 meddra_pt_id="10028997" 
                 meddra_llt="Cancer" 
                 meddra_llt_id="10007050" /> 
</Reaction> 



These three sets accomplished overall F1-measures ranging from 67.4% to 
77.0% in NER identification (Task 1), and micro-level F1-measures between 77.6% to 
82.6% and macro-level F1-measures between 75.6% and 80.5%) in normalizing to 
appropriate MedDRA PT, respectively (Task 4). The best performance was achieved 
when NERs were identified using our ML approach, which were then normalized to 
MedDRA Preferred Terms by dictionary- and rule-based approach (SciMiner). 
 

  CONDL1 CONDL2 CONDL3 
Task 1 +type Precision 76.5 65.5 65.2 

Recall 77.5 61.4 69.8 
F1 77.0 63.4 67.4 

-type Precision 76.5 65.5 65.2 
Recall 77.5 61.4 69.8 
F1 77.0 63.4 67.4 

Task 4 micro Precision 88.8 74.6 74.6 
Recall 77.2 81.0 81.0 
F1 82.6 77.6 77.6 

macro Precision 88.2 73.1 73.1 
Recall 75.8 79.9 79.9 
F1 80.5 75.6 75.6 

Table 4 Official evaluation results 

Conclusion 
 In this paper, we employed two different methods for detecting mentions of type 
ADR, drug class, animal, severity, factor, and negations from drug labels. The neural 
network-based approach outperformed the dictionary- and rule-based approach in 
extracting ADRs. 
 

As future work we will investigate incorporating ontology and dictionary 
knowledge into the deep learning model. Also updating the word embeddings (Chiu, 
2016), making an extensive parameter search and solving the problems with chunk 
labeling and preprocessing are likely to increase the performance of the deep learning 
model.  
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