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Abstract
Identifying Adverse Drug Reactions
(ADRs) is an important concern in clinical
medicine. Automatic extraction of ADRs
from the corpus enable many clinical deci-
sion support applications, and drug labels
or ’package inserts’ are among the primary
sources of information. The Adverse Drug
Reaction extraction from Drug Labels
challenge at TAC 2017 defined several NLP
tasks leading up to ADR extraction from
a subset of drug labels. We participated
in the Task 1 (extraction of mentions of
severity, drug class, negation, animal, and
factor) and the Task 2 (identification of
relationship types - negated, hypothetical
and effect - between ADRs and related
assertions). For Task 1, we implemented a
joint Bi-directional-LSTM (BiLSTM)-CRF
and Attention-BiLSTM neural network for
identifying contiguous, discontiguous and
overlapping mentions simultaneously. For
Task 2, we used another Attention-BiLSTM
network. Our system achieved F-measures
of 78.21 for untyped exact match and 78.00
for typed exact match, for Task 1. Using
the mentions generated by our system, we
achieved F-measures of 45.16 and 44.60 for
the binary relation detection (Task 2) with-
out and with type identification respectively.
However, using the gold standard mentions
we achieved 91.20 and 87.86 F-measures
for the Task 2. Thus, through this work,
we demonstrated effective adaptation of
BiLSTM networks for a subset of ADR
extraction tasks.

Index Terms: Deep Learning, Adverse
Drug Reaction, Drug Labels, Named Entity
Recognition, Relation Extraction, BiLSTM-
CRF, Attention-BiLSTM

1 Introduction

Identifying Adverse Drug Reactions (ADR) is an im-
portant concern for patients, physicians, researchers,
regulatory authorities, and drug manufacturers alike.
However, collecting and maintaining an ADR repos-
itory is largely a tedious manual task. Usually, ADRs
for a drug are identified in one of two phases. First,
during Phase III of clinical trials, ADRs of a drug
are carefully observed and the data is recorded. This
data forms the ‘Drug Label Data’, which is added
as ‘package inserts’ with the drugs. The US Food
and Drug Administration (FDA) strictly regulates the
content and format of this information. However, the
drug label data can vary among various drug man-
ufacturers for the same drug. The second phase of
ADR detection for a drug takes place, once the drug
is on the market. Physicians may observe and report
ADRs to systems like FDA Adverse Event Report-
ing System (FAERS). Maintaining an accurate ADR
repository not only requires consolidating the drug
label data from various manufacturers but also re-
viewing the FAERS reports to determine if the re-
ported post-marketing ADR is undetected or missing
in the current drug label data. This process is largely
manual and labor intensive. Thus, to improve the ef-
ficiency of this process, it is desirable to automate
extraction of ADRs from drug labels.

Information Extraction methods for Named En-
tity Recognition (NER) and Relation Extraction is
a fundamental requirement in automatic ADR ex-
traction for drug labels. Accuracy of these founda-
tional analytics will significantly impact ADR cura-
tion and further, has the potential to improve clinical
decision support systems. TAC 2017 challenge on
“Adverse Drug Reaction Extraction from Drug Label
Data Challenge” identified multiple tasks involved in
ADR extraction from the drug labels data. BiLSTM-
CRF models (Huang et al., 2015) has previously
shown to accurately recognize continuous entities in
clincal and biomedical NLP data sets (Chalapathy



et al., 2016; Habibi et al., 2017). Li et al., (2017) en-
hanced this method to recognize not only the contigu-
ous entities but also non-contiguous and overlapping
entities on biomedical data sets from ShARe/CLEF
eHealth Evaluation Lab 2013 (Suominen et al., 2013)
and GENIA v.3.02 (Kim et al., 2003). In this reser-
ach, we adapted and improved upon Li et al., method
to extract concepts with their semantic types, where
the semantic types include Adverse Reaction, Ani-
mal, Drug Class, Factor, Negation, Severity and Ef-
fect. Further, we used Attention-Based BiLSTM net-
works for the relation classification task, where the
relations include effect, negated, and hypothetical as-
sertions. In this work, our contributions are as fol-
lows:

• State-of-the-art deep learning architectures for
Named Entity Recognition and Relation Extrac-
tion for ADR extraction.

• Novel technique for identifying disjoint (dis-
continuous and overlapping) entities using
Attention-BiLSTM.

The rest of the paper is organized as follows: in
Section 2, we describe the dataset and label encod-
ing schemes used in concept extraction for this chal-
lenge. In Section 3, we present our system architec-
ture and methods for the concept and relation extrac-
tion tasks. In Section 4, we describe experimental
settings of the system and achieved results for differ-
ent settings and parameters. In Section 5, we con-
clude with our insights and details about the future
direction.

2 Datasets and representation
2.1 Datasets
In a collaborative effort, National Library of
Medicine(NLM) and U.S. Food and Drug Admin-
istration (FDA) manually annotated 101 drug label
documents with concepts, relations and reactions.
This data which consists of 15722 mentions (13795
Adverse Reactions, 44 Animal, 249 Drug Class, 602
Factor, 98 Negation, 934 Severity), 3228 relations
(1454 Effect, 1611 Hypothetical and 163 Negated)
and 7038 reactions. Furthermore, the organizers
released an unannotated dataset comprises of 2208
drug label documents. Combined, these represent a
significant core study set of labels of interest to the
FDA. Furthermore, to evaluate the participant sys-
tems, a separate test dataset with 100 drug label doc-
uments is created and kept blind. This dataset con-
sists 13735 mentions (12317 AdverseReactions, 27

Animal, 94 DrugClass, 520 Factor, 102 Negation 675
Severity) and 2039 relations (695 Effect, 1225 Hypo-
thetical, 119 Negated).

2.2 Label encoding and decoding schemes
Typically, the named entities or concepts are con-
tinuous sequences of words. Thus, in machine
learning-based named entity recognition (NER) sys-
tems, annotated data is encoded using BIO tagging,
where each word is assigned into one of three la-
bels: B means beginning, I means inside, and O
means outside of a concept. However, BIO encod-
ing is not sufficient for disjoint concepts. In the 101
manually annotated drug label documents about 7%
(1078/15722) of mentions are disjoint concepts with
overlapping words or discountinous spans.

With the advent of disjoint concepts in recent NER
challenges, Tang et al., (2013; 2015) tried to address
this problem by using alternative label encodings
such as: BIOHD and BIOHD1234. Recently, Li et
al. (2017) used BIOHD encoding and proposed a de-
coding scheme that is better suited for such an encod-
ing. Furthermore, their system showed improvement
on several NER datasets compared to using BIO tag-
ging. Thus, in this paper, we adapted their encoding
and decoding techniques that contains 7 labels {B I
O HB HI DB DI} in which:

• HB and HI refers to tokens that are shared by
multiple concepts. These words are the over-
lapped portions of disjoint concepts. We refer
to these token/sequence of tokens as head com-
ponents.

• DB and DI refers to tokens that belong to dis-
continuous concepts, however these tokens not
shared by multiple concepts. We refer to these
token/sequence of tokens as discontinuous com-
ponents.

• B and I are used to label the tokens that belong
to continuous concepts and,

• O refers to tokens that are outside of concepts.

Figure 1 shows an example with BIOHD label en-
coding with semantic type and annotated concepts.

During the decoding stage, given an input sen-
tence, as a first step, we first identify continuous con-
cepts and the components of disjoint concepts (head
and discontinuous components). Next our system
predicts whether each pair of the extracted disjoint
components should be combined or not. It is triv-
ial to merge when only two such components are de-
tected in the given sentence and it is not otherwise.



Figure 1: BIOHD encoding for concept extraction.

When more than two such components are present in
a sentence, we construct a graph G = {V,E}, where
the vertex set V represents all components and the
edge set E represents the positive relations predicted
from the second step. The decoding objective is to
extract all the cliques in graph. Finally, all the com-
ponents in a clique compose an integrated concept.
For a complete understanding of this encoding and
decoding schemes please refer to (Li et al., 2017).

3 Architectures of Concept and
Relation Extraction

With the recent advancements in deep learning re-
search, several neural network architectures have
been successfully applied to concept and relation ex-
traction. Among these, architectures based on bi-
directional LSTMs are proven to be very effective
(Huang et al., 2015; Ma and Hovy, 2016; Zhou et al.,
2016; Zhang and Wang, 2015). In this section, we
describe our concept and relation extraction systems
in detail. The architectures of our concept and rela-
tion extraction systems are illustrated in Figure 2 and
Figure 3 respectively.

3.1 Bi-directional LSTM

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) is a type of recurrent neural net-
work (RNN) that models interdependencies in se-
quential data and addresses the vanishing or explod-
ing gradients (Bengio et al., 1994) problem of vanilla
RNNs by using adaptive gating mechanism.

Given a input sequence x=(x1, x2...xT ) where T is

the sequence length, LSTM hidden state at timestep
t is computed by:

it = σ(Wi ∗ xt +Ui ∗ ht−1 + bi)

ft = σ(Wf ∗ xt +Uf ∗ ht−1 + bf )

ot = σ(Wo ∗ xt +Uo ∗ ht−1 + bo)

gt = tanh(Wg ∗ xt +Ug ∗ ht−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(1)

where σ(.) and tanh(.) are the element-wise sigmoid
and hyperbolic tangent functions, � is the element-
wise multiplication operator, and it, ft, ot are the
input, forget and output gates. ht−1, ct−1 are the
hidden state and memory cell of previous timestep
respectively.

Unidirectional LSTMs suffer from weakness of
not utilizing the future contextual information. Bi-
directional LSTM (Graves and Schmidhuber, 2005;
Graves, 2013) addresses this by using two indepen-
dent LSTMs (forward and backward) in which one
processes the input sequence in the forward direction,
while the other processes the input in the reverse di-
rection. The forward LSTM computes the forward
hidden states (

−→
h1 ,
−→
h2 , ....

−→
ht) while the backward

LSTM computes backward hidden states (
←−
h1 ,

←−
h2 ,

....
←−
hn) . Then for each timestep t , the hidden state

of the Bi-LSTM is generated by concatenating
−→
ht and

←−
ht

←→
ht = (

−→
ht ,
←−
ht) (2)



Figure 2: Architecture of Concept Extraction.

3.2 CRF Layer

Although Bi-directional LSTM networks have the
ability to capture long distance inter-dependencies,
previous research suggests additionally capturing the
correlations between adjacent labels can help in se-
quence labeling problems (Lample et al., 2016; Col-
lobert et al., 2011; Huang et al., 2015). Conditional
random fields (CRF) (Sutton et al., 2012) helps in
capturing these correlations between adjacent tags.
Given an observation sequence

←→
ht (outputs from Bi-

directional LSTM), CRF jointly models the probabil-
ity of the entire sequence of labels Y=(y1, y2...yT )
by using the discriminative probability to yi given
xi and the transition probability between adjacent la-
bels.

3.3 Attention Bi-directional LSTM

Attention mechanism is a technique often used in
neural translation of text introduced in (Bahdanau
et al., 2014). The attention mechanism allows the
networks to selectively focus on specific information.
This benefited serveral natural language processing
(NLP) tasks such as factoid question answering (Her-
mann et al., 2015), machine translation (Bahdanau
et al., 2014) and relation classification(Zhou et al.,
2016). In this paper, we used attention mechanism in
disjoint entity recognition sub model of concept ex-
traction task ( see Figure 2) and relation classification
task (see Figure 3) similar to (Zhou et al., 2016)

Formally, let H be a matrix consisting of output

vectors [
←→
h1 ,
←→
h2 ....

←→
ht ] (outputs from Bi-directional

LSTM network), the representation r of the input is
formed by a weighted sum of these output vectors:

M = tanh(H)

α = softmax(wT ∗H)

r = H ∗ αT

(3)

where HεRdwXT , dw is the dimention of vectors,
wT is the transpose of trained parameter vector. We
obtain the final representation from:

h∗ = tanh(r) (4)

3.4 Architecture of Concept Extraction
As shown in Figure 2, our concept extraction ar-
chitecture contains two sub-models, namely, 1) Se-
quence Labelling sub-model and 2) Disjoint concept
extraction sub-model.

Sequence Labelling sub-model: The sequence la-
beling sub-model labels each word of an input sen-
tence. This sub-model contains embedding layer
to which we feed word, part-of-speech embeddings
and character representations. Next, it contains bi-
directional long-short term memory layer (as intro-
duced in 3.1) which takes inputs from embedding
layer and transforms them to high level features or
representations. Then, these features are fed into the
CRF (as introduced in 3.2) for labeling each word as



Algorithm 1: Algorithm for concept extraction

1 foreach epoch do
2 foreach batch do
3 Sequence Labelling sub-model:
4 1) forward pass for forward-state LSTM and backward-state LSTM
5 2) forward and backward pass for CRF layer
6 3) backward pass for forward-state LSTM and backward-state LSTM
7 4) update parameters

8 Disjoint concept extraction sub-model:
9 5) forward pass for forward-state LSTM and backward-state LSTM

10 6) attention mechanism
11 7) backward pass for forward-state LSTM and backward-state LSTM in Disjoint concept

extraction sub-model
12 8) backward pass for forward-state LSTM and backward-state LSTM in Sequence Labelling

sub-model
13 9) update parameters

Figure 3: Architecture of Relation Extraction.

shown in Figure 2. Finally, we adopt the Viterbi al-
gorithm for training the CRF layer and decoding the
optimal output label sequence.

Disjoint concept extraction sub-model: As an al-
ternative step, a subset of the features from BiL-
STM layer Sequence Labelling sub-model (features
for words between and including the words in each

pair of discontinuous or header components) are fed
into the BiLSTM layer of Disjoint concept extrac-
tion sub-model. Additionally, we insert positional
indicators <TARGET></TARGET> around the tar-
get components. Consequently, outputs of this BiL-
STM layer are fed into attention layer which pro-
duces a weight vector, and merges word-level fea-
tures from each time step into context-level feature



vector. Finally, a softmax function is used to deter-
mine whether the target components should be com-
bined or not.

The training procedure for concept extraction is
shown in Algorithm 1. We generate one training
data representation for the sequence Labelling sub-
model and another for the disjoint concept extrac-
tion sub-model. The former contains sequence of
tokens from the sentences and corresponding label
assigned according to the label scheme introduced in
Section 2.2 and the latter representation contains sen-
tences (only words between and in the target compo-
nents) for each pair of components, positional indi-
cators <TARGET></TARGET> around target com-
ponents and corresponding label indicating whether
these concepts are connected or not.

We exploit back propagation to update the parame-
ters of these two sub models. Adam optimizer is em-
ployed to control the update step. In addition, we add
L2 regularization and utilize dropout to alleviate the
over-fitting problem. For each batch, in the training
dataset, we train these sub-models alternatively. The
parameters of LSTM units in the sequence labeling
sub-model are shared by both sub-models, thus the
loss of each batch can propagate and update these
parameters.

3.5 Architecture of Relation Extraction

The architecture of our relation extraction system is
illustrated in Figure 3. We used Attention-BiLSTM
architecture introduced by (Zhou et al., 2016) for re-
lation classification. This network contains:

Input layer: This layer takes tokens, part-of-
speech tags from a sentence as input. Zang et.
al(2015) first introduced the position features (PF)
in bi-directional LSTM architures and demonstrated
their use for relation classification task. These
features are derived from the relative distances
of the current token to the target pair of con-
cepts. Further, Zhou et. al(2016) replaced po-
sitional features with much simpler positional in-
dicators (as shown in Figure 3 for concepts “no”
and “infusion-related reactions”) and demonstrated
similar results. Thus, we used positional indica-
tor tags around the tokens of target pair of con-
cepts. Finally, in the dataset introduced in 2.1,
the relationship is always between adverse reac-
tions and other concept types. Thus we reserved
<TARGET></TARGET> positional indicators for
adverse reactions and <SOURCE></SOURCE>
positional indicators for other concept types.

Embedding layer: The embeddings layer maps

each token and its pos-tag into a low dimension vec-
tor.

Bi-directional LSTM layer: This layer trans-
forms the inputs from the embedding layer to high
level features;

Attention layer: This layer merges word-level
features from each time step into a sentence-level
feature vector using the attention mechanism intro-
duced in section 3.3

Output layer: This layer takes sentence-level fea-
ture vector as input and uses a softmax classifier to
classify the relation associated between target con-
cepts.

4 Experiments and Results
4.1 Experimental Settings

Concept Extraction
parameter BIO NerOne OurSystem

dropout 0.4 0.4 0.5
learning rate 0.02 0.03 0.03

regularization 1e−7 1e−6 1e−6

hidden layer 150 100 100

Table 1: Hyperparameters for concept extraction.

Relation Extraction
parameter Extraction Classification

dropout 0.5 0.5
learning rate 0.01 0.01

regularization 1e−7 1e−5

hidden layer 100 100

Table 2: Hyperparameters for concept extraction.

Concept Extraction
Precision Recall F1

Exact (-type) 81.12 75.50 78.21
Exact (+type) 80.90 75.30 78.00

Relation Extraction
Binary 54.62 38.50 45.16

Binary (+type) 53.94 38.02 44.60
Full (-type) 48.64 32.89 39.24
Full (+type) 48.13 32.54 38.83

Table 3: Results for concept and relation extraction.

We used 20% of the training data as our
development set. We used Stanford CoreNLP
toolkit(Manning et al., 2014) for tokenization, sen-
tence segmentation and part-of-speech tagging. The



Relation Classification
Precision Recall F1

Binary 90.06 92.38 91.20
Binary (+type) 86.75 88.99 87.86

Full (-type) 87.48 85.03 86.24
Full (+type) 84.09 81.74 82.90

Table 4: Results for relation classification.

Concept Extraction
Precision Recall F1

BIO Tagging 81.10 70.30 75.31
NerOne 79.80 74.30 76.95

Our system 80.90 75.30 78.00

Table 5: Results for concept and relation extraction.

word and character embeddings are pre-trained, us-
ing word2vec (Mikolov et al., 2013). The training
data for the embeddings is unannotated adverse drug
reaction documents released as part of the task. We
fixed word embedding length to 200, character em-
bedding length to 50 and part-of-speech embedding
length to 20. The part-of-speech embeddings are ini-
tialized randomly.

Hyperparameters: There are four hyper-
parameters in our models, namely the dropout
rate, learning rate, regularization parameter, and
hidden layer size. The hyperparameters for our
models were tuned on the development set for each
task. Previous research suggests using dropout
mitigates over-fitting and especially beneficial to the
NER task(Ma and Hovy, 2016). We experimented by
tuning the hyperparameters with different settings:
dropout rates (0.0, 0.1, 0.2, 0.3 and 0.4,0.5), hidden
layer sizes (100,150,200) and regularization pa-
rameter (1e−5, 1e−6, 1e−7,1e−8.). We chose Adam
(Kingma and Ba, 2014) as our stochastic optimizer
and tuned the learning rate at (0.01,0.02,0.03).
.We used early stopping(Graves, 2013) based on
performance on development dataset. The best
performance appear at around 20 epochs and 15
epochs for concept extraction and relation extraction
respectively.

4.2 Results

Table 3 shows our submitted results on test dataset
for both concept and relation extraction tasks. These
results are obtained by using the hyperparameters
shown in Table 1 and Table 2 for concepts and re-
lation extraction tasks respectively. These hyper-

parameters are obtained by tuning them on devel-
opment set. For the concept extraction task, we
achieved F-measure of 78.21 for recognizing the con-
cept spans and F-measure of 78.00 for recognizing
the concept spans with their semantic types. Further-
more, we compared the test dataset results of the Bi-
LSTM-CRF model using BIO tagging, NerOne (Li
et al., 2017) with our system. For a fair comparision,
we used parameter tuning in all these systems and
used same input features/embeddings for all these
systems. As shown in Table 5 , both NerOne and
our system outperformed BiLSTM-CRF with BIO
tagging. Moreover, our system achieved the high-
est precision and recall and outperformed state-of-
art NerOne system for recognizing continous disjoint
concepts.

For the relation extraction task, we achieved F-
measure of 45.16 and 44.60 for determining binary
relations without and with semantic type of target
concepts respectively. Also, we achieved F-measure
of 39.28 and 38.83 for determining relation type
without and with semantic type of target concepts re-
spectively.

We separately conducted experiments providing
the gold-standard concepts to our relalation extrac-
tion system. The results are presented in Table 4 and
we achieved significantly high F-measure of 82.90
compared to 38.83 with predicted concepts. This in-
dicates further improvements is needed in our con-
cept extract model.

5 Conclusion and Future Work
We reported on using state-of-the-art deep learn-
ing neural networks for identifying mentions and
relations relevant to ADR extraction. We used a
novel BiLSTM-CRF models for identifying contigu-
ous mentions and Attention-BiLSTM for identifying
discontiguous mentions and relation extraction. Ac-
curacy of mentions identification and relation extrac-
tion using gold labels for mentions was high on the
official test set (F measures were about 78.0 for men-
tions, and between 81.0 and 91.0 for relation classi-
fication). However, F measures for relation extrac-
tion with mentions that were detected by our ana-
lytics were low (only in the range of 38.0 to 45.0).
Further analysis showed that the poor performance of
our model for low frequency classes resulted in poor
results in relation extraction, because these low fre-
quency classes appeared in disproportionately large
number of relations. In the future, we plan to address
low frequency relation classes in more detail and sep-
arately. Also, we plan to exploit semi-structured na-



ture (tables, lists, sections) of drug label data for both
the tasks. Deep learning models proved to be effec-
tive in detecting adverse reactions (including the dis-
contiguous mentions) and relations . Thus, we con-
tinue to pursue this research direction in more depth
to further improve our system.
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Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. 2011. Natural language processing (al-
most) from scratch. Journal of Machine Learning
Research 12(Aug):2493–2537.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
lstm and other neural network architectures. Neu-
ral Networks 18(5):602–610.

Maryam Habibi, Leon Weber, Mariana Neves,
David Luis Wiegandt, and Ulf Leser. 2017. Deep
learning with word embeddings improves biomed-
ical named entity recognition. Bioinformatics
33(14):i37–i48.

Karl Moritz Hermann, Tomáš Kociskỳ, Edward
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