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Abstract
This paper describes our participation in the
TAC-KBP 2017 Cold Start++ Knowledge
Base Population task. Our SAFT system
is a loosely-coupled integration of individual
components processing documents in English,
Spanish and Chinese. The system extracts en-
tities, slot relations, event nuggets and argu-
ments, performs entity linking against Free-
base and event coreference, and also integrates
sentiment relations extracted by external col-
laborators at Columbia and Cornell. The var-
ious extractions get combined, linked, decon-
flicted and integrated into a consistent knowl-
edge base (one per language) for query-based
evaluation.

1 Introduction

This paper describes our participation in the TAC-
KBP 2017 Cold Start++ Knowledge Base Popula-
tion task. Our SAFT system is a loosely-coupled in-
tegration of individual components processing doc-
uments in English, Spanish and Chinese. The sys-
tem extracts entities, slot relations, event nuggets
and arguments, performs entity linking against Free-
base and event coreference, and also integrates senti-
ment relations extracted by external collaborators at
Columbia and Cornell. The various extractions get
combined, linked, deconflicted and integrated into
a consistent knowledge base (one per language) for
query-based evaluation.

The 2017 Cold Start++ KB population task was
a very significant extension of Cold Start KBP

(CSKBP) tasks held in previous years along a num-
ber of dimensions:

(1) It was mandated to be tri-lingual for English,
Spanish and Chinese. While the 2016 CSKBP task
was also organized for all three languages, partici-
pants were free to choose which language conditions
to participate in.

(2) Cold Start++ fully integrated the entity discov-
ery and linking aspect which previously was eval-
uated separately. A CSKBP system will generally
need an entity linker to perform its task, but in the
past performance was only evaluated relative to slot-
filling queries. This time linking of entities to the
Freebase reference KB was also evaluated.

(3) Cold Start++ fully integrated a tri-lingual ver-
sion of the event nugget detection and linking task
held in previous years, as well as

(4) a tri-lingual version of the event argument de-
tection and linking tasks from 2015 and 2016.

(5) Finally, a tri-lingual sentiment detection task
was added, however, this task was somewhat simpli-
fied relative to the full BeSt tasks organized in prior
years and only focused on sentiment relations be-
tween person entities.

Needless to say, Cold Start++ was extremely chal-
lenging. A mono-lingual CSKBP participation is a
difficult task to complete. In addition, Cold Start++
added EDL, event nuggets, event arguments and
sentiments across three languages which literally in-
creased the task complexity by a factor of 10 or
more.

Our team had a strong technology base to start



with particularly for EDL and events and was work-
ing towards a full participation in all dimensions of
the Cold Start++ task. In the end, however, we ran
out of time and fell short with respect to (1) Chi-
nese slot filling relations where we finished and ran
the extractor but failed to integrate its results, and
(2) Spanish slot filling relations where various train-
ing data preparation and preprocessing had been fin-
ished, but we failed to complete and run the extractor
on the Spanish document set.

2 SAFT Cold Start++ System Architecture

Figure 1 shows the overall architecture of our SAFT
Cold Start++ KBP system for the TAC-KBP 2017
evaluation. The system is an asynchronous, dis-
tributed, loosely-coupled integration of modules that
generally communicate by exchanging files. Inputs
and outputs for most modules are segmented by
document, or are otherwise concatenations of per-
document outputs, as is the case for the EDL com-
ponent. File formats are either native formats used
by components such as CoreNLP or the Joint LSTM
parser (e.g., CoNNL), standard output formats de-
fined by TAC (for example, the formats used by
EDL and the KResolver Mini-KB outputs), or minor
variations of TAC-KBP formats (e.g., for the vari-
ous event nugget, argument and coreference compo-
nents).

Modules were run by different team members at
different sites, and upon run completion result files
were archived and manually shipped to other team
members to allow their modules to run using those
results as inputs. Each component processes its in-
puts fully automatically, some then send their re-
sults automatically to downstream components (e.g.,
from English Slot Relations to KResolver Mini-KB
Integration), while others currently require manual
data exchange (for example going from the Event
Merger to KB Integration). Running in this dis-
tributed fashion allowed us to leverage existing in-
stallations and computing infrastructure at different
sites with minimal migration and installation over-
head; however, there is no principal restriction to
this mode of operation, everything could have been
run fully automatically end-to-end with some extra
engineering overhead.

Connections between modules indicate input-

output dependencies. For example, EDL requires
document pre-processing by CoreNLP. Line and box
colors indicate language-specific data flow and pro-
cessing capabilities. For example, Event Nuggets A
takes English (black) and Chinese (red) preprocess-
ing from CoreNLP and produces English and Chi-
nese event nuggets which are forwarded to Event
Coref A. Similarly, Event Nuggets B takes English
(black) and Spanish (blue) as inputs and produces
English and Spanish event nuggets. All components
have access to raw input text which is not shown ex-
cept for Event Nuggets B which does not require any
other significant preprocessing. The picture is still
somewhat simplified, since multi-language modules
are not always uniform in their capabilities across
languages (e.g., CoreNLP provides a reduced set of
models for Spanish). Moreover, CoreNLP which
was used by a number of different SAFT modules
was run multiple times at different sites with differ-
ent configurations.

All modules shaded in gray originated from
within the SAFT team. Third-party modules such
as CoreNLP and the Malt parser were run by SAFT
team members as needed to drive their own modules.
The only exception are sentiment relation extractors
which were run by external contributors not part of
the SAFT team, based on inputs provided by SAFT.
Dotted lines indicate incomplete modules or connec-
tions as for (1) Chinese Slot Relations where we fin-
ished the module and ran the extractor but failed to
integrate its results, and (2) Spanish Slot Relations
where various training data preparation and prepro-
cessing had been finished, but we failed to complete
and run the extractor on the Spanish document set.

Below we provide more detail on individual com-
ponent modules and their respective performance.
There are generally four kinds of evaluation re-
sults reported: (1) composite results from the full,
query-level evaluation of the resulting KBs, (2)
component-level results where performance of indi-
vidual modules was measured from the result KBs
by comparing to a comprehensive gold standard for
a small subset of documents, (3) standalone results
where modules were evaluated in one of the stan-
dalone tracks of the 2017 evaluation, and (4) other
individual module evaluation results in case no other
results are available.
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Figure 1: System architecture

3 Entity Discovery and Linking

Our tri-lingual Entity Discovery and Linking mod-
ule (EDL) is based on a system we developed for the
TAC-KBP 2015 EDL track, and since then extended
and improved to address new challenges added for
recent EDL tracks (Fauceglia et al., 2015; Fauceglia
et al., 2016). In particular, the 2016 and 2017 tracks
targeted larger-scale data processing by increasing
the size of source collections from 500 to 90,000
documents, and expanded targeted individual nomi-
nal mentions from only person mentions for English
(e.g., “the president”) to all entity types and to all
three languages (e.g., “the city” or “la compañı́a”).

Our end-to-end EDL system includes XML doc-
ument file parsing, entity extraction, linking, type
inference and NIL clustering. We use the Stanford
CoreNLP pipeline (Manning et al., 2014) for prepro-
cessing and named entity recognition, and adapt and
extend (Moro et al., 2014) for entity extraction and

linking. Our system first processes all of Wikipedia,
representing it as a directed weighted graph and then
computes a semantic signature for each vertex. Sec-
ond, we use these semantic signatures for entity dis-
covery and linking across three languages in a sys-
tem that uses an extended version of Babelfy1 as its
backbone. The system is described in more detail in
(Ma et al., 2017), below we just briefly describe the
main processing steps and evaluation results.

Our system first constructs a directed weighted
graph of Wikipedia, where vertices represent enti-
ties and concepts in Wikipedia. An edge exists from
vertex v1 to v2 if v2 appears in v1’s page as a text
anchor. Following Moro et al. (2014), the weight of
each edge is calculated as the number of triangles
(cycles of length 3) that this edge belongs to. To
implement the graph, we used the WebGraph frame-
work (Boldi and Vigna, 2004).

1http://babelfy.org



NER Linking Clustering
P R F1 P R F1 P R F1

Eng 79.3 52.3 63.0 69.0 45.5 54.8 68.9 45.4 54.7
Spa 78.0 45.9 57.8 70.8 41.7 52.5 67.5 39.7 50.0
Chi 72.2 43.6 54.4 62.4 37.7 47.0 66.4 40.1 50.9

Table 1: Official 2017 standalone TEDL evaluation results over all three languages for our best run for three key
metrics: strong typed mention match (NER), strong typed all match (Linking), and mention CEAF (Clustering).

NER Linking Clustering
P R F1 P R F1 P R F1

Named Mention
Eng 81.4 64.5 72.0 72.8 57.8 64.4 72.6 57.5 64.2
Spa 78.0 62.5 69.4 70.8 56.7 63.0 67.5 54.0 60.0
Chi 72.2 56.6 63.4 62.4 48.9 54.8 66.4 52.0 58.3

Nominal Mention
Eng 60.4 15.6 24.8 33.0 8.5 13.5 42.5 11.0 17.4
Spa – – – – – – – – –
Chi – – – – – – – – –

Table 2: Official standalone TEDL results on named and nominal mentions, respectively.

Using the completed Wikipedia graph, we com-
pute a semantic signature for each vertex, namely
the set of other vertices strongly related to
it. Relation strengths are computed using Per-
sonalized PageRank with node-dependent restart
(Avrachenkov et al., 2014) (which differs from Ba-
belfy). Vertices with a score lower than a threshold
are discarded.

Different from last year’s system, this year we
used the pre-trained NER system implemented in
Stanford’s CoreNLP to extract mentions, which sig-
nificantly reduced the number of mentions and ac-
celerated the linking algorithm. Given these men-
tions we perform candidate extraction by searching
through Wikipedia for candidate entities for which
(one of) the names of the entity is a superstring of
the text of the named mention. For nominals, we fo-
cus on named mentions within a certain window size
around the nominal and exploit a special word/entity
embedding we trained for this task to find candidate
entities that are similar to and coherent with the head
word of the nominal.

After the above steps, a semantic interpretation
graph is constructed by uniting all semantic sig-
natures of every candidate. A graph densification
algorithm is then applied iteratively until a den-

sity threshold is reached. Finally, every mention is
linked to its most likely candidate (including NIL)
according to a scoring function.

Once a candidate Wikipedia entity is found, it is
mapped back onto Freebase via a map built before-
hand and we perform type inference based on its
type specifications in Freebase using a small set of
rules. If a candidate entity has one of the five tar-
get types, it is assigned that type, otherwise it will
be discarded. The final step is NIL clustering where
we simply merge candidates with exactly the same
name spelling.

Table 1 shows results from the 2017 standalone
TEDL evaluation for all three languages for our best
run for three key metrics: strong typed mention
match (NER), strong typed all match (Linking) and
mention CEAF (Clustering). Table 2 shows results
broken out for named and nominal mentions, respec-
tively. It should be noted that our system can cur-
rently only handle English nominal mentions.

4 Event Extraction Systems

While prior CSKBP tasks focused exclusively on
the extraction of entities and slot relations (e.g.,
per:spouse), a major goal of the 2017 Cold
Start++ task was the integration of event informa-



tion. The following aspects of events are addressed
by the task: (1) Event nuggets, which are trigger
words or phrases indicating an event such as “killed”
or “election”. (2) Event arguments that fill in one
or more roles of an event such as the victim of a
killing or the person elected in an election. (3) Event
coreference within-document which groups events
and their arguments into Rich ERE event “hoppers”
(Song et al., 2015), as well as cross-document event
coreference which links hoppers across documents.
(4) Realis indicating whether an event actually oc-
curred or whether it is generic, unspecific, failed, fu-
ture tense, etc.

All these aspects were evaluated in standalone
event evaluations this year and in prior years,
and their integration into Cold Start++ follows the
guidelines from those standalone evaluations. The
only exception is cross-document event coreference
which is new to Cold Start++ imposed by treating
the result as a linked knowledge base. However, the
challenge of this cross-document event coreference
requirement was softened somewhat by stipulating
that events will never be the initial or intermediate
subject of evaluation queries.

Our team has a rich portfolio of event extrac-
tion systems from prior TAC-KBP event evaluations
which were further extended and refined for Cold
Start++. Those systems are labeled A-to-C in Fig-
ure 1. In addition, a new system D was developed
this year to provide additional nugget and argument
detection for English as well as a merging compo-
nent to integrate our rich set of event processing re-
sults. Below we describe these subsystems in some
more detail, for additional information see (Liu et
al., 2016; Hsi et al., 2017; Spiliopoulou et al., 2017).

4.1 Event Nuggets and Coreference System A

The goal of this module is to detect event nugget
instances and coreference clusters that group to-
gether the nuggets referring to the same underly-
ing events. The targeted languages are English and
Chinese. The nugget detector is an extension of
systems developed for prior TAC-KBP evaluations
(Liu et al., 2015; Liu et al., 2016). It employs a
Conditional Random Field (CRF) model (Lafferty et
al., 2001) trained discriminatively using the Passive-
Aggressive algorithm. We use a number of tools for
preprocessing, syntactic as well as semantic parsing:

CoreNLP, SEMAFOR (Das et al., 2014), FANSE
Parser2 as well as the LTP3 parser and toolkit for
Chinese.

The following traditional linguistic features are
used for both languages:

• Lemma, part-of-speech (POS), named entity
tags of the trigger itself, and the words in a 2-
word window (both sides)

• Lemma, POS of the two bigrams that include
the trigger

• Brown clusters, WordNet synonyms and
derivative forms of the trigger

• Selected WordNet senses of tokens in the trig-
ger’s sentence

• Closest named entity type
• Lemma, dependency type and POS of the child

and head of the trigger based on dependency
• Frame name and semantic argument features

(lemma, POS, NER tag) from semantic parses

We also include character level features for Chi-
nese, including the containing characters of the trig-
ger, the first/last character of the trigger, and the
head character configuration structure (that is, at
which position did the head character appear).

Our coreference resolver is a Latent Antecedent
Tree model that constructs a tree based on the de-
tected nuggets using three types of features:

• Trigger match: exact and partial match of trig-
ger words

• Argument match: exact and partial match of the
arguments

• Discourse features: sentence and mention dis-
tances

Matching between coreference candidates is
based on word vector similarity, Brown cluster
matching, WordNet sense matching, POS, lemma,
mention type and mention realis. Event nugget and
coreference results are then merged with those from
other CMU SAFT team systems to create a merged
output (see Section 4.5).

Due to the merging of multiple event module out-
puts, we do not have individual results for this mod-
ule alone. Our component-level results (detailed in
Table 7) are F1=35.85 mention span detection score

2http://www.isi.edu/publications/licensed-sw/fanseparser/
3http://ltp.ai



for English, which is the top result for all Cold
Start++ teams. Our coreference score is 13.56 in
terms of KBP average, which ranks at second place
for English. Our Chinese systems performance is
slightly lower at F1=29.06, and the coreference KBP
average is 8.71. Note that most individual KBP par-
ticipants have a higher recall than precision, while
we observe the opposite. This is likely due to the
fact that we merge the results of multiple systems.

4.2 Event Nuggets and Coreference System B

Similar to System A, the goal of event nugget detec-
tion system B is to identify event spans in text and
assign an event type to each detected span. The tar-
geted languages are English and Spanish. System
B can detect 38 event types as defined for the TAC
KBP 2015 Event Nugget task, which is a superset
of the 18 event types used in Cold Start++. We for-
malize event detection as a sentence-level sequence
labeling problem using the BIO scheme, where B is
the beginning of an event nugget, I is inside, and O
is outside. This means that every token is classified
into one of 77 classes (i.e., O, B-X or I-X where X
is one of the 38 event types).

Our approach is an extension of a neural event de-
tection system developed for TAC-KBP 2016 (Liu
et al., 2016) that uses a bidirectional long short-
term memory (BiLSTM) (Graves and Schmidhu-
ber, 2005). BiLSTMs have been shown to success-
fully capture contextual information of a sentence
or its subsequence, achieving superior performance
in numerous sequence modeling tasks such as de-
pendency parsing (Wang and Chang, 2016), rela-
tion extraction (Miwa and Bansal, 2016), sentiment
analysis (Ruder et al., 2016), and question answer-
ing (Hermann et al., 2015). BiLSTMs are a variant
of LSTMs (Hochreiter and Schmidhuber, 1997) that
enhance standard LSTMs by modeling a sequence
in both forward and backward directions with two
separate hidden states to capture past and future in-
formation. Future information can be important in
event detection, because event arguments are often
effective features for event detection and some argu-
ments such as patients and locations tend to appear
after an event nugget in a sentence.

In sequence labeling problems such as event de-
tection, independent token-level classification deci-
sions are limited, and it is beneficial to consider the

dependencies between labels in neighborhoods and
jointly decode the best sequence of labels for an in-
put sentence. Therefore, instead of decoding labels
independently, we model them jointly using a con-
ditional random field. Specifically, we put a CRF
layer on top of BiLSTM layers, similarly to (Ma and
Hovy, 2016; Lample et al., 2016). For training we
use the TAC KBP 2015 event nugget dataset. We
also employ pre-trained 50-dimensional GloVe word
vectors (Pennington et al., 2014) and do not fine-
tune them during training. We use Adam (Kingma
and Ba, 2015) to optimize parameters based on the
performance in the validation dataset. Our exper-
iments show that the model achieves 61.90 F1 in
span detection and 55.91 F1 in span+type detection
on the TAC KBP 2015 test data (English). This per-
formance is close to the state-of-the-art, and it was
ranked third in the official results of TAC KBP 2015.

4.3 Event Nuggets and Arguments System C

The primary goal of this module is to extract event
arguments for each event discovered by the vari-
ous SAFT event nugget modules. The targeted lan-
guages are English, Spanish and Chinese. The sys-
tem is described in more detail in (Hsi et al., 2017),
here we only briefly summarize its main character-
istics.

The overall pipeline for event argument extraction
is as follows: We begin by performing preprocess-
ing using Stanford CoreNLP and the MaltParser4

on the input documents to extract information such
as tokenization, part of speech tags and dependency
parses. We then obtain entity extractions from two
different sources: (1) a model trained using the stan-
dalone Stanford NER tool, and (2) the EDL output
from the module described in Section 3. We then
obtain event nugget information from (1) the CRF-
based event nugget detection System A described
in Section 4.1 designed for English and Chinese,
(2) the BiLSTM-CRF-based event nugget detection
System B described in Section 4.2 designed for En-
glish and Spanish, and (3) a logistic regression clas-
sifier applied to each word in the document designed
for all three languages (labeled Event Nuggets C in
Figure 1).

The output from entity extraction and nugget de-

4http://www.maltparser.org/



Arg Score Link P R F1
Eng 2.53 1.76 21.99 6.84 10.44
Spa 1.56 0.38 31.45 1.95 3.67
Chi 4.00 1.71 28.84 7.82 12.30

Table 3: Official 2017 standalone event argument and linking results for Event Arguments System C for the following
metrics: error-based argument score, B3-based linking score (both at the median of the confidence interval), and
general precision, recall and F1 for argument tuple extraction.

tection is then fed into a logistic regression argument
classifier, which makes predictions of argument re-
lationships on every entity/nugget word pair within
the same sentence. Finally, a realis label is pre-
dicted for each discovered argument, once again us-
ing logistic regression. For training, we used the
ACE 2005 and RichERE datasets. Word embed-
dings for all three languages were obtained from
their respective Wikipedia dumps using word2vec.
Arguments are extracted separately for each set of
event nuggets coming from systems A, B and C
and are then merged by the Event Merger (see Sec-
tion 4.5).

Our logistic regression classifiers use a combi-
nation of language-dependent features (e.g. lex-
ical features, embeddings, language-specific part-
of-speech tags) and language-independent features
(e.g. Universal POS tags, Universal Dependencies,
entity type information). This enables us to train
a single cross-lingual model that can be applied to
all three target languages. The effect of our cross-
lingual training is most noticeable when there is lit-
tle annotated event training data available (as is the
case for Spanish).

Table 3 summarizes the evaluation results for this
component on the TAC-KBP 2017 standalone event
argument extraction task. Details of our participa-
tion and results are described in (Hsi et al., 2017).

4.4 Event Nuggets and Arguments System D

The goal of this module is again event nugget de-
tection together with the extraction of any of their
arguments for each event discovered. The targeted
language for this module is English only.

The main idea behind our event detection ap-
proach is that frame-semantic parsers generate a rich
set of predicates that can directly serve as event
nuggets. To this end, our approach starts with the
output of a frame-semantic parser which is then re-

fined in order to get a large set of event nugget can-
didates. This allows us to exploit the rich seman-
tic structure generated by such a parser to gener-
ate more event candidates and achieve higher recall
than previous systems. Our approach is described
and evaluated in more detail in (Spiliopoulou et al.,
2017), below we just briefly list its main character-
istics.

In order to generate a list of candidate events,
we use SEMAFOR (Das et al., 2014) which is
a frame-semantic parser based on FrameNet (Fill-
more et al., 2003) that links terms and text spans
to frames and their roles as defined by FrameNet.
Since FrameNet covers a wide range of semantic
structures including events, entities, time units, and
many more, filtering and refinement is necessary to
focus on events only. To do this we utilize struc-
tural similarities between FrameNet and the TAC
KBP ontology. We observe that most types of the
TAC KBP event ontology can be decomposed into
a small set of FrameNet frames. Thus, we first
manually construct a many-to-one mapping from
a subset of FrameNet frames to TAC-KBP event
types. For example, any of the frames Attack,
Destroying, Downing, Explosion, Hostile

encounter, Invading, Shoot projectiles,
or Use firearm might indicate a TAC-KBP event
type of Conflict.Attack. We then detect our
event nuggets based on this mapping: a mention
generated by SEMAFOR is accepted as an event
only if its frame is in the domain of the mapping.

The final part of the system involves the extraction
of arguments for all extracted event nuggets. For
this part we decided not to use the frame-semantic
parser, since FrameNet’s frame roles have very dif-
ferent definitions from the argument roles described
in the TAC KBP guidelines. Instead, we use the de-
pendency graphs produced by Stanford’s CoreNLP
parser in order to assign most of the arguments of



an event nugget. Specifically, for location and time
arguments, we used the CoreNLP NER module and
we assign a named entity as time or location of an
event nugget only if both occur at the same sentence.

4.5 Event Merger

This module combines the outputs of the four event
detection systems described above. It generates a set
of merged event nuggets for all three languages, a set
of merged event arguments for all three languages
and it integrates the event coreference clusters from
Systems A and B into a uniform format but leaves
them unmerged.

The module first takes the union of the collected
outputs (nuggets and arguments) and then runs a
neural net classifier to provide confidence scores for
each event nugget instance. These confidence scores
depend only on the type of event that each system
predicts for every candidate event (which is None

if a system did not classify a certain mention as an
event). We currently do not have a mechanism to
compute confidence values for event arguments.

5 Relation Extraction Systems

The relation extraction systems shown in the lower
part of Figure 1 extract the 65 TAC-KBP Cold
Start slot relations used in past CSKB evaluations.
These slots divide into 15 string-valued slots such
as per:title or org:website, 26 entity-valued
slots such as per:spouse or org:founded by,
plus an additional 24 inverse slots added specifically
for CSKB evaluations to make all entity-valued slots
traversable in both forward and backward directions.

Our initial portfolio of Cold Start relation extrac-
tion systems was much smaller compared to our
large number of event modules, and consisted only
of a single limited-coverage English relation extrac-
tion system used in the 2015 English CSKB evalu-
ation (Chalupsky, 2015). Therefore, to address this
part of the task, we had to extend and improve the
existing English extractor and build new extractors
for Spanish and Chinese from scratch. The chal-
lenge for Spanish and Chinese which are relatively
recent additions to the task is the small amount of di-
rectly relevant training data available from previous
evaluations. We addressed this challenge by using a
machine translation approach for Spanish and a dis-

tant supervision approach for Chinese described in
more detail below.

5.1 English Slot Relations

The first goal of this module is to detect relation ar-
guments and any of the 65 CSKB slot relations that
hold between them. A second goal is to link entity-
valued relation arguments to a descriptive name
within the document for cases where an argument
is a pronoun or nominal. These names are then used
by KB integration components in conjunction with
EDL results to link relations into a KB.

Our English relation extractor extends a limited-
coverage extraction system we built for the 2015
CSKB evaluation (Chalupsky, 2015) called Knowl-
edge Resolver (or KRes). The system uses (1) a
pattern-based extractor for a subset of the relations,
(2) an extended full-coverage statistical extractor,
and a name-linker that uses a small set of depen-
dency patterns in conjunction with coreference in-
formation from CoreNLP.

KRes is a logic-based inference system based
on the PowerLoom5 knowledge representation and
reasoning system aimed at improving relation ex-
traction through the exploitation of richer seman-
tic information. KRes uses the Stanford CoreNLP
toolkit for tokenization, POS-tagging, sentence de-
tection, NER-typing, dependency parsing and coref-
erence resolution. CoreNLP annotations (such as
sentences, mentions, NER-types, parse trees, etc.)
are then translated into a logic-based data model for
the PowerLoom KR&R system.

The pattern-based extractor is very similar to
previous versions and described in more detail in
(Chalupsky, 2013; Chalupsky, 2014). It applies a
set of dependency patterns represented as Power-
Loom terms to the various annotations generated
by CoreNLP. We developed patterns for the fol-
lowing nine TAC-KBP slot relations: per:age,
per:children, per:employee or member of,
per:other family, per:parents,
per:siblings, per:spouse and per:title.
Each pattern match identifies two relation argu-
ments as well as the detected relation type between
them.

The statistical extractor is an extension of previ-

5http://www.isi.edu/isd/LOOM/PowerLoom/



ous versions that (1) now addresses the full set of
TAC-KBP slots, (2) uses a single multi-class classi-
fier instead of the binary classifiers used before, (3)
does not make use of features based on SEMAFOR
anymore, and (4) adds some new features such as
Brown clusters compared to what is described in
(Chalupsky, 2014).

The extractor starts by detecting possible argu-
ments of types relevant to TAC-KBP slots. Ar-
gument mentions and their types are constructed
from NER-types detected by CoreNLP, Wordnet,
as well as gazetteers such as title lists. It then
enumerates possible argument pairs within a cer-
tain maximum distance in the dependency tree and
then classifies each pair using a 30-class maximum
entropy classifier. To keep the set of classes as
small as possible we normalize each relation onto
its canonical forward form and combine the vari-
ous city/state/country slots onto place slots such as
place of residence which are then refined later
based on a more fine-grained classification of their
arguments. The classifier was trained on a set of
about 8,000 examples derived from previous TAC-
KBP evaluations and manually inspected for errors,
as well as comprehensive ERE document annota-
tions provided by LDC.

The name linking component is more or less iden-
tical to previous versions and described in more de-
tail in (Chalupsky, 2013).

The result of this extraction process is a set of
typed, sentence-level relation mentions whose ar-
guments might be named mentions, nominals, pro-
nouns or values such as ages. Additionally, we have
a set of name links connecting relation mention ar-
guments to the best named mention describing them
(where possible). We do not have evaluation results
available for this module alone. Relevant composite
and component evaluation results for English slot re-
lations are described in Section 8.

5.1.1 KResolver Mini-KB Integration
The second phase of English slot relation extrac-

tion is what we call Mini-KB generation, which pro-
duces consistent per-document KBs in TAC-KBP
format for each document in the corpus. These
document-level mini-KBs are then combined into a
global raw KB which is then further refined and de-
conflicted (see Section 7).

The main advantage of this scheme is scalability,
since it allows us to use more expensive inferencing
on a smaller, focused, per-document basis, which in
addition can be performed in parallel, since docu-
ments can be processed independently. The disad-
vantage is that it prevents us from performing more
fine-grained adjudication of conflicts when looking
across documents.

The Mini-KB integration phase takes entity men-
tions and relation mentions generated during the re-
lation extraction phase together with equivalence in-
formation from CoreNLP coreference, name links
and EDL cross-document coreference as input. It
then links equivalent entity mentions into enti-
ties and equivalent relation mentions into relations
which then form an initial raw knowledge base. The
challenge is that all mention-level information is
noisy, incomplete, redundant, fully or partially over-
lapping and possibly inconsistent.

In particular, once equivalences are introduced,
type information from equivalent mentions starts
propagating which can commonly lead to conflicts.
For example, the text “Los Angeles mayor Anto-
nio Villaraigosa...” might generate a relation men-
tion of type org:top members employees be-
tween “Los Angeles” and “Antonio Villaraigosa”.
The domain type of the relation would imply “Los
Angeles” to be of type ORG which would conflict
with a GPE type from EDL or a LOCATION type from
CoreNLP for the same mention.

To address this in a principled way, we imple-
mented an incremental KB linking, evaluation and
refinement architecture. In this architecture, all an-
notations coming from text extraction components
are treated as separate hypotheses. Specifically we
generate instance hypotheses representing instances
of arbitrary types implied by mention texts, type hy-
potheses for the possible types of those instances, re-
lation hypotheses to represent relation mentions be-
tween instances and equivalence hypotheses to rep-
resent various instance equivalences from corefer-
ence, name links and mention overlaps.

In this phase we also map different type sys-
tems used by different extraction components onto
a shared ontology rich enough to represent all nec-
essary distinctions. For example, a LOCATION type
from CoreNLP really means named location and
generally corresponds to GPE from the TAC-KBP



ontology. In this phase we also generate a more
fine-grained classification of named locations into
cities, states and countries. If a location mention
has been linked to Freebase by EDL, we derive its
narrower type from the corresponding Freebase en-
try. For unlinked mentions, we use a set of city, state
and country gazetteers derived from the GeoNames6

database.
In the linking phase we perform incremental

what-if analyses of subsets of these hypotheses to
see which combinations lead to conflicts and what
the culprits of these conflicts are. This part of
the system heavily leverages PowerLoom’s multi-
contextual reasoning as well as its explanation sys-
tem. We currently use a greedy scheme that starts
by asserting all type and relation hypotheses in a hy-
pothetical reasoning context. We then query for all
type and constraint violations, and for each violation
found we analyze the proof tree to find the set of
extraction hypotheses underlying the conflict. This
allows us to easily exploit type and argument con-
straint rules (e.g., anti-reflexivity) as well as domain
rules, for example, about family relations.

We then retract the weakest hypothesis in a con-
flict support to remedy the conflict. Hypothe-
sis strengths are based on classifier confidences or
heuristics where those are not available (e.g., re-
lation hypotheses are generally weaker than entity
type hypotheses). Next we assert mention overlap
equivalence hypotheses and repeat this process, then
the same for name links, coref links implied by EDL
and then general coref links from CoreNLP. This
process introduces noisier and noisier information at
each stage and then retracts the weakest hypotheses
underlying any newly discovered conflicts. At the
end we use the set of surviving type, relation and
equivalence hypotheses to form the mini-KB for the
current document.

Finally, we translate entity and relation hypothe-
ses from our intermediate integration ontology into
the TAC-KBP type system. For example, place re-
lations such as hasPlaceOfDeath together with
more fine-grained types such as City for the sec-
ond argument translate into per:city of death,
too fine-grained family relation such as hasNiece
are mapped onto per:other family, and we also

6www.geonames.org

perform some other inferences for inverse slots and
inferring employment from top employment. We ad-
ditionally perform some value normalization here,
e.g., for ages and dates, however, normalization for
place names is still missing, which accounts for
some redundancy and inexact match errors.

Next we output a mini-KB file in TAC-KBP KB
format for entities, types and relations with associ-
ated provenance. We do not yet eliminate redundan-
cies which is left to Phase 3 of the KB construction
process (see Section 7). Most importantly, entities
linked to Freebase m-IDs or NIL clusters by EDL
receive KB IDs based on these identifiers, which
will automatically link them with corresponding en-
tities from other documents, thus, forming a globally
linked knowledge base.

5.2 Spanish Slot Relations
The Spanish Slot Relations module’s primary goal
was to extract the 65 CSKB slot relations from Span-
ish documents. Given the relatively short amount
of time and limited man power available to us, we
aimed at building an extractor very similar in struc-
ture to the system we had previously built for En-
glish described in the previous section. To do this
there were two primary challenges we needed to ad-
dress: (1) a very limited amount of available training
data, and (2) a more restricted set of NLP tools and
resources available for Spanish.

Our approach for the first challenge was to use
machine translation from Microsoft’s Azure free
tier machine translation service. However, in-
stead of translating source documents from Spanish
into English and then running our English extrac-
tion pipeline over it (which would have been cost-
prohibitive for a corpus of 30,000 documents), we
decided to translate our corpus of English relation
annotations described above, which could easily be
done using Microsoft’s free tier service. Relation an-
notations need precise delineation of argument spans
which get lost in plain translated output. Fortu-
nately, the Azure service can handle HTML markup
in its input and tries to preserve tags and their logi-
cal positions in the translated output. This allowed
us to mark up arguments in the English input and
have the translated sentences marked up with their
Spanish argument counterparts.

We also used Azure to translate our English



gazetteers for titles, geo-names, crimes, etc. into
Spanish. Additionally, we extended our gazetteers
with a bootstrap approach using embeddings from
the Spanish Billion Words Corpus7 and a small
amount of manual checking and filtering. To spot-
check translation quality, we back-translated small
samples via Google’s Spanish-to-English translation
service, and the results of those checks looked gen-
erally encouraging.

To address the second challenge, we had to resort
to use different, less established tools that generally
required significant effort to be integrated into a pro-
duction pipeline. For example, since CoreNLP only
supported a limited pipeline for Spanish, we instead
used a Joint LSTM semantic dependency parser for
Spanish developed by other members of our team
(Swayamdipta et al., 2016) not involved in this eval-
uation. We also had to address various other issues
such as lemmatization, training up Brown clusters
from scratch or to procure an entity coreference sys-
tem for Spanish.

In the end, a large number of these preparation
and preprocessing tasks were finished, but we ran
out of time and failed to complete and run the extrac-
tor on the Spanish document set. For this reason, the
module box in Figure 1 is drawn with dotted lines
and we do not have any Spanish evaluation results
for queries that involved any slot relations.

5.3 Chinese Slot Relations

Our Chinese relation extraction module aims to find
CSKB slot relations from Chinese text. Slot rela-
tions are comprised of 41 base relations and their
inverses. In order to automatically extract slot rela-
tions, we use an ensemble of rule-based classifiers
and a bi-directional Gated Recurrent Unit (GRU)
model with sentence-level attention.

Due to the sparsity of available training data, we
used distant supervision (Mintz et al., 2009) to gen-
erate labeled training data from available knowledge
bases and linkable unlabeled corpora. Specifically,
we used DBpedia (Auer et al., 2007) as the KB to
generate facts containing the relations of interest by
manually mapping slot relations to either directly
corresponding DBpedia relations or multi-hop rela-
tion paths. This resulted in 23 slot relations being

7http://crscardellino.me/SBWCE/

mapped to at least one DBpedia relation or path. For
the remaining relations we manually created rules
and built a small number of rule-based classifiers to
generate the final results.

DBpedia contain a very large number of real-
world facts in (entity1, relation, entity2) triple
format. We generated training data by aligning
208,259 relational facts extracted from DBpedia
with Wikipedia articles, and assuming that if two
entities participate in a relation, any sentence that
contains those two entities might express that rela-
tion. In the end, we generated 1,711,341 instances
for training, and 398,566 instances for testing, each
instance being a sentence (possibly) expressing one
of the relations mined from the KB.

There is an inevitable noisy labeling problem that
accompanies distant supervision. In order to tackle
that, we follow the idea of (Lin et al., 2016), (Zhou
et al., 2016) and the work from the Natural Lan-
guage Processing Lab at Tsinghua University8, and
use a bi-directional Gated Recurrent Unit (GRU)
model with selective attention over instances for re-
lation extraction, which can dynamically reduce the
weights of noisy instances and make better use of
informative ones.

We start by constructing a Chinese character em-
bedding using a skip-gram model (Mikolov et al.,
2013). All words with less than 5 occurrences are
removed, numbers and dates are replaced with spe-
cial tokens, and named entities are recognized and
concatenated together by underscores.

For each training instance to the neural relation
extraction model we have an entity pair and a set of
sentences as input, and the known relation labels as
output. In the first layer of the model, each character
wt in the sentence is represented as the vector

[v(w)
t ; v(p)t ; v(n)t ]

where v
(w)
t is the character embedding, v(p)t is the

position embedding which encodes the relative dis-
tance from the current word to the head or tail entity,
and v

(n)
t is a vector indicating whether wt is part of a

named entity using the entity type with a BIO label.
In the second layer, a bidirectional GRU is used

to encode each sentence. The hidden representations
of each time step from both directions are concate-

8https://github.com/thunlp/TensorFlow-NRE



nated as the features of each word. We used two at-
tention mechanisms on different granularities: word
level and sentence level. Word-level attention calcu-
lates attention scores for each word in the sentence
to determine which words are more important for ex-
pressing the relation. A weighted sum of the hidden
representations using attention scores are used to
represent the sentence. Sentence-level attention cal-
culates attention scores for each sentence of a given
entity pair to select the more informative sentences
and to reduce the negative influence of label noise
from distant supervision. A final softmax layer is
used to calculate the probability of each relation as
well as cross entropy for calculating loss.

Our approach forms a corpus-level relation ex-
tractor that predicts relations between entity pairs
collectively based on all sentences in the corpus
where two entities co-occur. This is different from
more traditional sentence-based approaches as used,
for example, by our English slot relations compo-
nent. Since a Cold Start++ submission requires
provenance for each extracted relation, we selected
the top-3 sentences with highest attention scores for
each relation prediction as its textual provenance.

Applied to the 30,000 documents from the 2017
Chinese evaluation corpus, our extractor produced
76,307 relations with confidences of at least 0.5,
supported by 82,803 pieces of textual provenance
(that is, most relations had only one textual sup-
port). Unfortunately, KB integration of Chinese slot
relation results did not get finished in time and we
therefore do not have any relevant component-level
results from the evaluation. Instead we provide our
internal evaluation results from applying the trained
neural model to the distant supervision test set. Ta-
ble 5.3 shows total Area Under the Curve (AUC)
as well as precision numbers at the top-scoring 300,
600 and 900 relation instances.

Evaluation Metric Result
AUC 0.832

Precision @300 0.97
Precision @600 0.957
Precision @900 0.944

Table 4: Internal evaluation results of Chinese slot rela-
tion extraction

6 Sentiment Extraction Systems

Our team did not build any sentiment extraction sys-
tems. Instead, we were able to enlist outside help
from Columbia University for English and Spanish,
and from Cornell University for Chinese, who both
provided the principal sentiment extraction compo-
nents for the Tinkerbell team. All sentiment extrac-
tors take document annotations in LDC’s ERE for-
mat as input and produce sentiment annotations in
the BeSt XML format developed during past TAC-
KBP belief and sentiment evaluations.

The tri-lingual sentiment detection task of Cold
Start++ was significantly simplified relative to the
full BeSt tasks organized in prior years, and only
focused on sentiment relations between person enti-
ties. For Cold Start++ sentiments are therfore rep-
resented only by two person-to-person per:likes

and per:dislikes relations and their inverses.
Since our EDL component only produced named

mentions for all three languages and nominals only
for English, we decided to build specialized per-
son mention detectors to feed the external sentiment
extractors for better recall. To this end we built
person mention detectors for English and Chinese
based on the respective standard CoreNLP pipelines
plus Wordnet for nominal mentions, and a Span-
ish mention detector which also used CoreNLP plus
Wordnet plus our own tri-lingual JLSTM depen-
dency parser due to the limited functionality of the
CoreNLP pipeline for Spanish. For each language,
specialized processing was used to include the au-
thors from discussion forum posts. All three de-
tectors packaged the mentions they found into per-
document ERE XML files which were shipped to
our external collaborators for processing. We then
received corresponding per-document sentiment an-
notations for a subset of those mentions in BeSt
format which we translated for integration into the
overall KB.

7 Knowledge Base Integration

The last box in Figure 1 is the KB Integration com-
ponent. It takes in all outputs from any of the ex-
traction components across all three languages in
addition to source texts and CoreNLP annotations
to produce one KB file per language. In our sys-
tem, KB Integration needed to address the following



challenges:
(1) Cross-component linking: only KRes mini-

KBs and Chinese slot relations had an initial link
structure based on EDL identifiers and within-
document entity coreference. Event and sentiment
arguments were purely mention-based and had to be
linked to global EDL identifiers where possible or
otherwise unified with document-local entities from
other components.

(2) KB deconflicting: as described in Sec-
tion 5.1.1, once extractions are combined across
components and across documents, conflicts may
arise which lead to an inconsistent knowledge base.
These conflicts have to be detected and resolved be-
fore the KB can be submitted for validation and scor-
ing.

(3) KB aggregation and refining: redundant re-
sults should boost overall confidence, conflicting re-
sults should lower confidence and be resolved, du-
plicates should be removed and best-supported re-
sults should be reported for single-valued slots.

(4) KB and provenance formatting: the 2017 Cold
Start++ KB format was extremely complex, effec-
tively combining results from five separate TAC-
KBP evaluation tasks into a single file format. Com-
plex provenance rules, multiple justifications for the
new Mean Average Precision scoring scheme, string
nodes for text-valued slots, and a very large set
of event-type/role combinations additionally over-
loaded with realis annotations made KB formatting
a very significant challenge and quite a different task
from previous Cold Start KB evaluations (the spec-
ification of which only became available about one
month before the start of the evaluation).

An additional complicating aspect of KB integra-
tion is that it is an inherently global task that needs
to take into account all or large portions of the entire
corpus data at once. For this reason, it is not as triv-
ially parallelizable as the various document-centric
processing performed by individual extraction com-
ponents. In the end we had between 9-11 data and
result files per document and language, summing to
a total of about 1 million data files that needed to be
processed to build the final KBs. When it became
apparent that a previously built integration compo-
nent for English would not easily generalize to the
new complexity and scale of the tri-lingual Cold
Start++ data, we embarked on building a Python-

based integration component from scratch geared
very specifically to this evaluation. Unfortunately,
this realization came very late in the game, and we
produced about 1,500 lines of new Python code in
the final two days before the submission deadline.
This left only very little room for testing and led to
some unfortunate bugs and surprises which are de-
scribed in more detail in Section 8.

Our basic approach to KB integration was as fol-
lows: we start by building a raw KB that unions and
links outputs from individual components by intro-
ducing, normalizing and merging KB node IDs as
necessary. We start with EDL output which is taken
more or less literally and only reformatted to con-
form to the Cold Start++ output format. We do not
have meaningful confidences for EDL mentions, so
all mentions added to the KB get confidence 1.0.

Next we output KRes mini-KB tuples (for En-
glish only) literally with the exception of relation
provenance for relations that take a string value (e.g.,
per:title). These now require the introduction of
a string node for the filler string plus exact prove-
nance for the location of the filler which required
some additional analysis and matching, since that
provenance was not recorded as such in the mini-
KB format. Since mini-KBs already have entity IDs
which can be directly mapped to EDL entity IDs,
nothing special has to be done for linking. Our Span-
ish slot relation extractor was not finished, and our
Chinese extractor was finished but we did not fin-
ish the required mapping in time, so no slot relations
were output for either Spanish or Chinese.

Next we output event argument results. Event
mentions are mapped onto KB IDs based on their
within-document coreference information which
also connects to event nugget IDs. No cross-
document event coreference was attempted. Cases
where event mentions wound up in multiple event
hoppers (e.g., due to the multiple event coreference
systems we were using) were addressed by merg-
ing those hoppers. The type of an event was always
based on the merged type determined by the Event
Merger component. Next we tried to link event argu-
ment mentions with already existing mentions from
EDL or KRes using a simple overlap match. More
sophisticated methods that would also take other
syntactic information and coreference into account
could not be developed in time. If no linkable men-



tion could be found, a new string entity was intro-
duced to represent the argument. No meaningful ar-
gument confidence was produced by the event ar-
gument detector, instead we used the merged con-
fidence for the existence of an event for this type
which generally should be an overestimate for the
argument confidence.

Next we output event nuggets which is fairly
straight-forward. All that needs to be done here is
to link them to other nuggets or events from event
arguments via their within-document event corefer-
ence links. We again use merged type, realis and
confidence provided by the Event Merger.

Finally, we output sentiment relations. Similar
to the event arguments case, we try to match senti-
ment relation source and target mentions to entities
introduced by EDL or KRes. If no match could be
found, we introduce new document-local entities for
source and/or target. We use the confidences pro-
vided by the respective sentiment extractor without
any thresholding, which also included a large num-
ber of very low confidence sentiment relations.

At this point we have all the necessary informa-
tion to output an initial raw knowledge base. We
build this raw KB by combining all available linked
information with associated provenance, and then
perform some initial per-document canonicalization
which maps all inverse relations onto their corre-
sponding forward relations, then eliminates all (now
redundant) inverse slots, then removes document-
level duplicates and finally adds canonical mentions
for each entity in a document. At this point, how-
ever, this raw KB contains a significant number of
explicit and implicit conflicts. For example, we
might have multiple conflicting explicit type asser-
tions from different documents, or we might have
implicit conflicts between explicit entity type as-
sertions and implicit types implied by domain and
range constraints of the various slot, event and sen-
timent predicates.

To remedy type conflicts, we implemented a sim-
ple majority vote system to compute a preferred type
for an entity with multiple conflicting types. This
system simply counts the number of explicit and
implicit type judgments for each entity in the raw
KB. Explicit types come from EDL and/or the KRes
mini-KBs and are counted once per document. Im-
plicit judgments come from unique domain or range

types of slot, event and sentiment relations an en-
tity participates in, and are counted once per men-
tion. We then find problem entities with more than
one type and pick a preferred type based on the
counts computed before. All KB type assertions
and relations that conflict with this preferred type
are then simply rejected to make the KB consistent.
Our majority vote system did not take confidences
of types and relations into account which therefore
made it vulnerable to over-valuing low-confidence
information. In prior prototypes we had used strict
per-component thresholding which shielded the de-
conflicting component from this problem. For Cold
Start++, however, we retained low-confidence re-
sults to try to boost recall which lead to some unex-
pected and undiscovered problems discussed in the
evaluation section below.

Finally, additional KB-level refinements should
be performed to remove duplicates, pick best rep-
resentative for single-valued relations and add in-
verse slots. Due to time-constraints, we did not do
any further refinements along those lines and relied
on NIST’s Cold Start++ validator to perform them
for us. KB validation attempts revealed additional
issues mostly due to mentions for the same entity
coming from different components with some asso-
ciated provenance offset problems. These were ad-
dressed with some very specialized post-processing
of the different KBs.

The resulting KBs were quite large with 1GB
(8.6M lines) for English, 700MB (6.7M lines) for
Spanish and 300MB (3M lines) for Chinese.

8 Evaluation Results

We submitted results from one single run per lan-
guage only, each of which extracted information
exclusively from the 90,000 TAC KBP 2017 Cold
Start++ source documents. No other external re-
sources were used with the exception of using Free-
base to classify places into cities, states and coun-
tries after a location mention had been linked to
Freebase via our EDL component.

Given the complexity of the evaluation, natu-
rally results are also complex. This year’s Cold
Start++ evaluation was designed to also allow for
component-based evaluations for EDL, event argu-
ment, nugget and sentiment components, based on



NER Linking Clustering
P R F1 P R F1 P R F1

Eng 31.7 (-47.6) 39.9 (-12.4) 35.3 (-27.7) 19.5 (-49.5) 24.6 (-20.9) 21.8 (-33.0) 21.6 (47.3) 27.2 (-18.2) 24.1 (-30.6)
Spa 22.7 (-55.3) 28.0 (-17.9) 25.1 (-32.7) 19.9 (-50.9) 24.6 (-17.1) 22.0 (-30.5) 18.3 (-49.2) 22.5 (-17.2) 20.2 (-29.8)
Chi 38.8 (-33.4) 26.9 (-16.7) 31.8 (-22.6) 31.5 (-30.9) 21.9 (-15.8) 25.8 (-21.2) 35.0 (-31.4) 24.3 (-15.8) 28.7 (-22.2)

Table 5: The official 2017 Cold Start++ KB EDL component results of the SAFT team for all three languages for three
key metrics: strong typed mention match (NER), strong typed all match (Linking), and mention CEAF (Clustering).
Numbers in parenthesis show changes in comparison to TEDL evaluation results reported in Table 1.

Arg Score Link P R F1
Eng 0.65 (-1.88) 1.07 (-0.69) 11.22 (-10.77) 5.40 (-1.44) 7.30 (-3.14)
Spa 1.35 (-0.21) 0.32 (-0.06) 31.31 ( -0.14) 1.63 (-0.32) 3.10 (-0.57)
Chi 3.71 (-0.29) 1.40 (-0.31) 28.95 ( +0.11) 6.89 (-0.93) 11.13 (-1.17)

Table 6: The official 2017 Cold Start++ KB event argument component results of the SAFT team for all three languages
for the following metrics: error-based argument score, B3-based linking score (both at the median of the confidence
interval), and general precision, recall and F1 for argument tuple extraction. Numbers in parenthesis show changes in
comparison to EAL standalone evaluation results reported in Table 3.

a subset of 500 core documents for which a com-
prehensive gold standard had been created by LDC.
This gold standard contains 167 English, 166 Span-
ish and 167 Chinese documents. We start by de-
scribing component level results for each compo-
nent, relate them to standalone results where avail-
able to show how KB integration affected results,
and then describe our overall composite results from
the query-based Cold Start++ evaluation.

Table 5 summarizes official EDL component re-
sults based on our KB submissions for all three lan-
guages. Numbers in parentheses show changes rela-
tive to the standalone results by the same component
on the same documents summarized in Table 1 and
described in more detail in (Ma et al., 2017). As the
table shows, our EDL component results are 25-75%
lower than the respective standalone results which
was very unfortunate and also surprising to us. Since
EDL provides the core entity structure for the KB
and the entry points for the composite, query-based
evaluation, having subpar entity linking significantly
depresses all other results that rely on those enti-
ties. After some investigation we found the reason
for this to be a deficiency in our type conflict resolu-
tion approach already hinted at above. The majority
voting system did not take confidences of the un-
derlying relations into account, which led to a large
number of EDL entities having their types changed
to something incorrect. For example, we had signif-
icant numbers of low probability slot and sentiment

relations that led to entity type changes from GPE
to ORG or ORG to PER. In previous versions of
this component, confidence thresholding was done
before type resolution which prevented us from dis-
covering this problem in time.

Tables 6 and 7 summarize our official event ar-
gument and nugget component results based on our
KB submissions for all three languages. For event
arguments, numbers in parentheses show changes
relative to the standalone results by the same com-
ponent on the same documents summarized in Ta-
ble 3 and described in more detail in (Hsi et al.,
2017). For event nuggets we do not have official
standalone results, but an internal evaluation of one
of the nugget subcomponents revealed 5-10 F1-point
improvements on the gold-standard documents in a
standalone setting.

In general, event results are less affected by
the type-deconfliction problem we described above.
Event nuggets are not related to entities at all and
only evaluated at the mention level as well as for
their coreference to other event mentions. Event ar-
gument relations always start with an event object
which does not have conflicting types from other
components that it could be confused with. Only
when a correct event argument gets identified with
an EDL entity whose type was changed to something
incorrect do we lose a correct event result due to
our deconfliction problem. This is a much more un-
common situation which explains why the effects on



Plain Type Realis Type+Realis CoNLL
Eng 35.85 28.48 25.14 20.47 13.56
Spa 16.92 11.66 12.43 9.54 5.32
Chi 29.06 23.68 22.98 19.08 8.71

Table 7: The official 2017 Cold Start++ KB event nugget component results of the SAFT team for all three languages
for the following metrics: plain event mention, event type, realis, type plus realis and CoNLL linking score (all micro-
averaged F1).

English Hop 0 Hop 1 All
P R F1 P R F1 P R F1

All slots 18.69 7.93 11.13 0.24 2.52 0.44 2.61 6.76 3.77
Event only 33.62 10.46 15.95 - - - - - -
Slot-fill only 13.36 5.92 8.20 0.24 4.43 0.46 1.22 5.57 2.00
Sentiment only 13.70 8.93 10.81 0.00 0.00 0.00 13.70 7.04 9.30
Spanish Hop 0 Hop 1 All

P R F1 P R F1 P R F1
All slots 5.80 2.74 3.72 0.00 0.00 0.00 5.80 1.75 2.69
Event only 22.73 7.58 11.36 - - - - - -
Slot-fill only - - - - - - - - -
Sentiment only 3.06 3.95 3.45 0.00 0.00 0.00 3.06 3.30 3.17
Chinese Hop 0 Hop 1 All

P R F1 P R F1 P R F1
All slots 18.78 4.17 6.82 1.94 7.08 3.05 3.89 5.09 4.41
Event only 0.00 0.00 0.00 - - - - - -
Slot-fill only - - - - - - - - -
Sentiment only 23.50 18.53 20.72 1.94 32.08 3.66 3.98 22.78 6.78

Table 8: The official 2017 Cold Start++ KB query-based composite results of the SAFT team for all three languages
breaking out Hop-0 and Hop-1 queries as well as queries using specific slot types only (all micro-averaged LDC-
MAX-ALL).

the overall argument detection F1 is less dramatic.
The decrease in event nugget performance might be
mostly due to the multi-component integration in the
Event Merger and the conservation of lower proba-
bility results given the new MAP evaluation scheme
used in this year’s evaluation.

Finally, Table 8 summarizes our official query-
based composite results for all three languages. The
results shown use K=3 (that is the top-three re-
sults were considered if multiple justifications were
given), and the LDC-MAX scoring condition which
for each query picks the results from the best en-
try point instead of averaging over all of them. All
scores are based on the Mean Average Precision
(MAP) scheme used this year which took result con-
fidences into account, and are therefore not directly
comparable to results from previous years. This also
means that results are generally lower for that reason

alone, in addition to the complexity and additional
noise coming from the multi-component integration.

Only our English KB had results for all required
aspects, for Spanish and Chinese we did not finish
in time with our slot relation extractors. Due to our
entity type deconfliction problem, Hop-1 results are
generally very low, since they always require a cor-
rect intermediate entity. For this reason, we primar-
ily focus on Hop-0 results here. As described earlier,
our event components were the most mature which
is apparent in both the English and Spanish submis-
sions. At the time of this writing, we are still investi-
gating why event-only queries all failed for Chinese
despite the fact that our event argument results for
Chinese are actually the best for all three languages.
For English, precision significantly dominates recall
for all slot dimensions. For Spanish, results are gen-
erally very low and reflect the lack of resources and



training data. For Chinese, somewhat unexpectedly,
sentiment results are quite good and the best of all
component-level results for all three languages.

9 Conclusion

In this paper we presented the SAFT Cold Start KBP
end-to-end system used in our participation in the
TAC-KBP 2017 Cold Start++ Knowledge Base Pop-
ulation task. Our system performed well for event
nuggets, respectably for event arguments and entity
discovery and linking, and relatively poorly for slot
relations and overall composite query-based evalua-
tion of the resulting KBs. There are no deep techni-
cal insights or take-aways, except that NLP pipelines
are generally very complex, and that multi-linguality
and the focus on multiple target modalities exponen-
tiates this complexity. Our hope was that combining
entity, event and relation extractions would provide
redundancies that would improve overall results at
least in some areas. This hope was squashed by the
immaturity of our integration components which had
to be rewritten and adjusted very late in the game
which led to bugs that significantly depressed our
evaluation results. If there is one key insight from
all our work on this task, it is that robust integration
of multi-component NLP extractions for KB gener-
ation is itself a formidable challenge that requires
significant research beyond traditional NLP research
vectors.
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