
WIP Event Detection System at TAC KBP 2017 Event Nugget Track

Ying Zeng and Yansong Feng and Dongyan Zhao
Institute of Computer Science and Technology, Peking University
{ying.zeng, fengyansong, zhaody}@pku.edu.cn

Abstract

Event detection aims to extract events with
specific types from unstructured data, which
is the crucial and challenging task in event
related applications, such as event argument
extraction and event coreference resolution.
In this paper, we propose an event detec-
tion system that combines traditional feature-
based methods and neural network (NN) mod-
els. Experiments show that our ensemble ap-
proaches can achieve promising performance
in the Event Nugget Detection task.

1 Introduction

Event detection, also called trigger labelling, aims
to identify the mentions of some predefined event
types. In this paper, we focus on the event extrac-
tion task proposed by TAC KBP 2017 competition
(Song et al., 2016). An event nugget, as defined
by the competition annotation guidelines, includes
a word or a phrase of multiple words that instanti-
ates an event, a classification of event, and an indi-
cation of the REALIS value (ACTUAL, GENERIC,
or OTHER) of the event. Below are some examples
of event nuggets. The words underlined and in bold
face are event nuggets that represent a single event.

S1: Hillary Clinton was not elected presi-
dent in 2008. [Elect, OTHER]

S2: The police are investigating the
murder incident.1 [Attack, ACTUAL]

1This is an example of multi-word event nugget.

S3: Correa was even accused without any
evidences of murder.2 [Attack, OTHER;
Die, OTHER]

S4: Kennedy was shot dead by Oswald.3

[Attack, ACTUAL], [Die, ACTUAL]

In the remaining parts of this paper, we first pro-
vide an overview of our system in Section 2. The
following three sections describe the models we pro-
posed in each subtask in detail. Section 6 discusses
the experimental results, and Section 7 concludes
the paper.

2 System Overview

Most existing approaches to event extraction are su-
pervised and can be divided into feature-based and
NN-based methods.

Traditional approaches (Ahn, 2006; Chen and
NG, 2012; Li et al., 2013; Li et al., 2014) usu-
ally rely on a series of NLP tools to extract lexi-
cal features (e.g., part-of-speech tagging, named en-
tity recognition) and sentence-level features (e.g.,
dependency parsing). Although they achieve high
performance, they often suffer from hard feature en-
gineering and error propagation from those external
tools. Recently, neural network models have been
proved to show competitive performance against
traditional models in event extraction. Chen et
al. (2015) propose a convolutional neural net-
work (CNN) to capture lexical features, with a dy-
namic multi-pooling layer to encode sentence-level

2This is an example of multi-type event nugget.
3There are some cases where multiple event nuggets appear

in the same sentence.



clues. While Ghaeini et al. (2016) utilize a recur-
rent neural network (RNN) to solve the multi-word
event nugget issue. Feng et al. (2016) combine
Bi-directional LSTM (BiLSTM) and convolutional
neural networks to learn a continuous representation
for each word and predict whether it is an event trig-
ger or not. Methods based on neural networks keep
improving the performance on event extraction, and
yield state-of-art.

Inspired by previous work, our system combines
the feature-based method and neural-network-based
method. Specifically, we first preprocess the raw
text using Stanford CoreNLP tools (Manning et
al., 2014), including sentence splitting, tokeniza-
tion, POS tagging, lemmatization and named entity
recognition. Then we input these sentences into a
conditional random field (CRF) model, a maximum
entropy (MaxEnt) model, and a bidirectional recur-
rent neural network (RNN) model, separately. Fi-
nally, we ensemble outputs from different models at
last.

3 Feature-based Method

Our feature-based method follows the standard
pipeline paradigm, which divide event nugget detec-
tion into three subtasks:

1. trigger identification: recognize the event trig-
ger, which is the main word or phrase that most
clearly expresses the occurrence of an event.

2. trigger classification: assign an event type and
subtype for an identified trigger

3. REALIS classification: assign a REALIS value
for an identified trigger.

3.1 Trigger Identification

In the first step, we consider event trigger identifi-
cation as a sequence labelling task. Sentences are
tagged in the BIO scheme, where each token is la-
beled as B if it is the beginning of an event trigger, or
I if it is inside a trigger, or O otherwise. We use two
traditional classifiers, a Max Entropy model (Berger
et al., 1996) and a Conditional Random Field (CRF)
model (Lafferty et al., 2001). The feature templates
used for trigger identification in different models are
listed in Table 1.

Feature Templates Max Entropy CRF
wi−2wi−1wi

√

wi−1wi
√

wi
√ √

wiwi+1
√

wiwi+1wi+2
√

pi−1pi
√

pi
√

pipi+1
√

li−2li−1li
√

li−1li
√

li
√ √

lili+1
√

lili+1li+2
√

si
√ √

wordnet synseti
√

Table 1: Feature templates used in each model. w, p,
l, s represents word, POS tag, lemma, and stem respec-
tively. wordnet synseti indicates the WordNet synset
that word wi belongs to.

Max Entropy Model We only keep those features
that appear more than 3 times in the training set. For
example, if a bigram feature appears 4 times in the
training set, then we will keep it. Otherwise, we will
discard this feature if it appeared less than 4 times
in the training set. We use the implementation of Le
Zhang 4 for all max entropy classifiers in our system.

CRF Model The feature templates used in Max
Entropy and CRF are designed to be slightly differ-
ent, in order to obtain complementary contributions
from the two classifiers. We use the CRF implemen-
tation from the CRF++ toolkit 5.

3.2 Trigger Classification

Although the event type system in Rich ERE Anno-
tation Guidelines is a two-level hierarchy, we only
consider the subtype level for classification since no
subtype is shared by two or more first-level types.
We build a Max Entropy model to perform the type
classification task, where the feature templates we
used are listed in Table 2.

However, Max Entropy model is not a flawless so-
lution because it only assign one type for each trig-
ger, while one trigger may possibly have multiple

4https://github.com/lzhang10/maxent
5https://taku910.github.io/crfpp/



Feature Description
wifirst∼ilast words in a trigger
sifirst∼ilast stems in a trigger
synsetifirst∼ilast WordNet synsets in a trigger
wi−2wifirst wi−2 and first word of a trigger
wi−1wifirst wi−1 and first word of a trigger
wi+1wilast wi+1 and last word of a trigger
wi+2wilast wi+2 and last word of a trigger
nearest entity the nearest entity to a trigger

Table 2: Feature templates used in our Max Entropy
model for trigger classification. Note that one trigger may
contain multiple words.

Feature Description
wifirst∼ilast words in a trigger
wi−2wifirst wi−2 and first word of a trigger
dwi−1wifirst wi−1 and first word of a trigger
wi+1wilast wi+1 and last word of a trigger
wi+2wilast wi+2 and last word of a trigger
pifirst∼ilast POS tags of words in a trigger
sifirst∼ilast suffixes of words in a trigger
mifirst∼ilast modal auxiliaries of words in a trigger

Table 3: Feature templates used in our Max Entropy
model for REALIS classification.

subtypes. We find that co-occurrence based heuris-
tic rules can help to classify multi-type triggers.

First, we collect all triggers that may have mul-
tiple types, and record their most probable subtype
combinations in the training set. Since most of them
can be both single-type and multi-type with respect
to the context, we need also develop a classifier
to determine whether this appearance of the trigger
should have multiple subtypes or not in the given
sentence. Specifically, if the current trigger is in our
collected multi-type trigger list, we will use the Max
Entropy model described in this section to output
prediction scores for each subtype. If the difference
of scores between top 2 subtypes is smaller than 0.5,
then we will consider this trigger as a multi-type
trigger, and assign the most probable subtype com-
bination for this trigger.

3.3 REALIS Classification

Similar to the above subtasks, we build a Max En-
tropy model to perform the REALIS classification,
where the features we use are listed in Table 3.

S4 Kennedy was shot dead by Oswald.
NNattack O O B-ACTUAL O O O
NNdie O O O B-ACTUAL O O
NNelect O O O O O O

Table 4: Examples of output sequences by three NN
models trained for different event types, attack, die and
elect.

4 Neural Network Method

Unlike previous feature-based method, we jointly
learn trigger identification and REALIS classifica-
tion by one neural network to reduce the error prop-
agation problem of a pipeline model.

4.1 Tagging Scheme

To address the multi-word trigger and multi-type
trigger issues as mentioned in Section 1, we treat
event nugget detection task as a sequence labeling
problem. For each event type type, we train a
neural network model that labels each sentence in
the BIO scheme. Specifically, a word is labeled as
B-REALIS if it is the beginning of a trigger with
regard to a type event whose REALIS value is
REALIS, or I-REALIS if it is inside a trigger, or
O otherwise. For better understanding, resulting se-
quences of S4 labeled by models of different event
type are listed in Table 4. As we train the models
for each type independently, one word can belong to
several types.

Next, we introduce the layers in our BiGRU-CRF
network one-by-one from bottom to top.

4.2 BiGRU Network

Recurrent neural networks maintain a memory
based on historical contextual information, which
makes them a natural choice for processing sequen-
tial data. Long Short-Term Memory (Hochreiter
and Schmidhuber, 1997) is explicitly designed to
solve the long-term dependency problem through
purpose-built memory cells. For the event detec-
tion task, if we access to both past and future con-
texts for a given time, we can make use of more
sentence-level information and make better predic-
tion. This can be done by bidirectional LSTM net-
works. A forward LSTM network computes the hid-
den state

−→
ht of the past (left) context of the sentence



at word wt, while a backward LSTM network reads
the same sentence in reverse and outputs

←−
ht given

the future (right) context. In our implementation,
we apply a variation of LSTM units, Gated Recur-
rent Unit (GRU) (Cho et al., 2014), which is found
to be superior to LSTM on a suit of tasks by Chung
et al. (2014). We concatenate these two vectors
to form the hidden state of a BiGRU network, i.e.
ht = [

−→
ht ;
←−
ht ].

4.3 CRF layer
We propose a BiGRU-CRF model that considers the
correlations between labels in neighborhoods and
jointly decodes the best sequence of labels via a CRF
layer. Given an input sentence of length n, we con-
sider P to be a matrix of confidence scores output
by BiGRU network. P is of size n × e, where e is
the number of distinct tags, and Pi,j correspond to
the confidence of the j-th tag for the i-th word in
a sentence. We add a state transition matrix A in
CRF layer such that Ai,j represents the score of a
transition from label i to label j. We take into ac-
count neural network outputs and transition scores,
and score a sentence X along with a path of labels
y = {y1, y2, . . . , yn} to be

score(X,y) =
n∑

i=0

Ayi,yi+1 +
n∑

i=1

Pi,yi , (1)

where y0 and yn+1 are the special labels, start
and end, that we add to the set of possible labels. A
is therefore a square matrix of size (e+2)× (e+2).

We normalize this score over all possible label se-
quences ỹ using a softmax, and we interpret the re-
sulting ratio as a conditional label sequence proba-
bility over all possible label sequences:

p(y|X) =
exp(score(X,y))∑

ỹ∈Y exp(score(X, ỹ))
. (2)

We implement this neural network using Tensor-
flow library (Abadi et al., 2016). The 100-dimension
word embeddings are pre-trained on the Wikipedia
dump, and fine-tuned during training. And the size
of BiGRU unit is set to be 64. All models share
a generic stochastic gradient descent forward and
backward training procedure. Parameter optimiza-
tion is performed using Adam (Kingma and Ba,
2014) with gradient clipping (Pascanu et al., 2013).

We apply the dropout method (Srivastava et al.,
2014) on both the input and output vectors of all
models to alleviate overfitting.

5 Ensemble

Since we have more than one predictors in each sub-
task, we need to combine the outputs of each model
to produce more reliable results. Our ensemble strat-
egy follows the same three-step pipeline paradigm as
feature-based method.

In the trigger identification step, we train a Max
Entropy model, a CRF model and a BiGRU-CRF
model. The first two models simply predict whether
a word is in a trigger, while BiGRU-CRF models
predict the BIO label with respect to different event
types. So we first combine the results of BiGRU-
CRF models by following rules:

1. If a word is labelled as B by any BiGRU-CRF
model, label the word as B

2. If a word is labelled as I by any BiGRU-CRF
model, label the word as I

3. If a word is labelled as O by all BiGRU-CRF
model, label the word as O

After determining the result of BiGRU-CRF mod-
els, we predict the final label by majority voting.

In the second step, for each event type e, we cal-
culate a new score of every word in the sentences
according to the formulas below:

scoree =
1

feature ranke
+NNe (3)

NNe =

{
0.8 when labele = B or I

0 otherwise
(4)

feature ranke is the confidence score rank of
type e among all event types. And labele is the
label output by the BiGRU-CRF model trained for
event type e. As an event trigger could be annotated
with multiple event types, the resulting scores are
further enhanced in a multi-type style using the co-
occurrence based heuristic rules introduced in Sec-
tion 3.2.

In the third step, we also calculate a new score for
each REALIS value r with the following formulas:

scorer =
1

feature rankr
+NNr (5)



Attributes
Micro

Precision Recall F1
plain 65.91 43.86 52.67

mention type 57.84 38.49 46.22
realis status 48.12 32.02 38.45
type+realis 42.21 28.08 33.73

Attributes
Macro

Precision Recall F1
plain 66.46 44.39 53.23

mention type 58.70 39.44 47.18
realis status 48.56 33.27 39.49
type+realis 42.56 29.33 34.73

Table 5: Results on the final test set.

NNr =

{
0.8 when label = r

0.2 otherwise
(6)

feature ranke is the confidence score rank of
value r, while label is the output of BiGRU-CRF
model introduced in Section 4. We choose the value
that gets maximum score as final prediction.

6 Experiments

6.1 Setup

We use the training and evaluation data in TAC-KBP
2015 and 2016 contest for training. There are al-
together 529 documents in these corpora. We ran-
domly select 104 documents as validation set, and
the remaining 425 documents as training set. Dur-
ing training, we keep checking performance on the
validation set and pick the parameters that preforms
best for final evaluation.

6.2 Results

The result on the TAC KBP 2017 test set are shown
in Table 5.

7 Conclusion

In this contest, we propose an event nugget detection
system that can detect event triggers and assign an
event type and a REALIS value to each trigger. This
system incorporates many effective classifiers and
obtains promising results in the final evaluations.

Acknowledgement

This work was supported by National High
Technology R&D Program of China (Grant No.
2015AA015403), Natural Science Foundation of
China (Grant No. 61672057) and the joint project
with IBM Research. Any correspondence please re-
fer to Yansong Feng.

References

Martın Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

David Ahn. 2006. The stages of event extraction. In
Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events, pages 1–8. Association
for Computational Linguistics.

Adam L Berger, Vincent J Della Pietra, and Stephen
A Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational lin-
guistics, 22(1):39–71.

Chen Chen and V Incent NG. 2012. Joint modeling for
chinese event extraction with rich linguistic features.
In In COLING. Citeseer.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing, volume 1, pages 167–176.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Xiaocheng Feng, Lifu Huang, Duyu Tang, Heng Ji, Bing
Qin, and Ting Liu. 2016. A language-independent
neural network for event detection. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 66–71.



Reza Ghaeini, Xiaoli Z Fern, Liang Huang, and Prasad
Tadepalli. 2016. Event nugget detection with forward-
backward recurrent neural networks. In The 54th An-
nual Meeting of the Association for Computational
Linguistics, page 369.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of the eighteenth international conference on
machine learning, ICML, volume 1, pages 282–289.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event ex-
traction via structured prediction with global features.
In ACL (1), pages 73–82.

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Construct-
ing information networks using one single model. In
EMNLP, pages 1846–1851.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In ACL (System Demonstrations),
pages 55–60.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318.

Zhiyi Song, Ann Bies, Stephanie Strassel, Joe Ellis,
Teruko Mitamura, Hoa Dong, Yukari Yamakawa, and
Sue Holm. 2016. Event nugget and event coref-
erence annotation. In The 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics-Human Language Technologies
(NAACL HLT 2016). 4th Workshop on EVENTS: Defi-
nition, Detection, Coreference, and Representation.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.


