
IECAS Event Detection System at TAC KBP 2017 Event
Nugget Track

Yunyan Zhang 1,2,Tinglei Huang1,Yang Wang1

1Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100190, China

zhangyunyan15@mails.ucas.ac.cn
{tlhuang, ywang1}@mail.ie.ac.cn

Abstract— This paper describes our Event Nugget De-
tection systems that we submitted to the TAC KBP 2017
Event Track. We implement pipelined event detection
systems based on convolutional neural network (CNN)
and bidirectional Long Short-Term Memery (BiLSTM)
for both event type and realis classification. Our systems
use only word embeddings as external resources for train-
ing so they can be easily adapted to multiple languages.
The experimental results show that our approaches can
achieve promising performances in the Event Nugget
Detection task.

I. INTRODUCTION

Event extraction, which aims to extract event
mentions of specific types and their corresponding
event arguments from unstructured text, is a tra-
ditional task in Information Extraction (IE). Event
detection is an essential and challenging problem
in event extraction and attracts much attention in
recent years.

Text Analysis Conference Knowledge Base Pop-
ulation (TAC KBP) 2017 is an evaluation work-
shop in Neural Language Processing, which pro-
vides a large test collection and common evalua-
tion procedures.

We participate in the Event Nugget Track for
Event Nugget Detection, which is one of the tacks
in TAC KBP 2017. This task is required to detect
the event mentions in the input documents and
classify them into the types and subtypes prede-
fined in the Rich ERE guidelines. Also the task
is to identify REALIS attribute (actual, generic,
other) for every event mention. Here are some
examples of event nugget with specific type and
realis status in annotated data. The words in bold

face are event nuggets.
• Fortunately, despite firing [Conflict.Attack,

ACTUAL] at close range, the shooter didn’t
hit [Life.Injure, OTHER] anyone.

• She was killed [Life.Die, ACTUAL] in an
automobile acciden.

• Fred visited [Movement.Transportperson,
ACTUAL] New York on Friday.

• Fred visited [Contact.Meet, ACTUAL] Harry
in New York on Friday.

• They used tear gas to break up [Con-
flict.Attack, ACTUAL] a gathering [Con-
flict.Demonstrate, ACTUAL] of some masked
protesters.

We follow a pipelined manner to build our
Event Nugget Detection systems, which involve
two components in order: (1) event detection and
classification (called TYPE), (2) event realis clas-
sification (called REALIS). The input for TYPE is
raw text and the output of TYPE becomes the input
of REALIS. The output of REALIS is submitted
to the Event Nugget Detection task evaluation. We
use neural networks as the main technique in both
components. We train and evaluate our systems
only on English documents. Since our systems use
only word embeddings as resources for training,
they can be adapted for multiple languages easily.

II. RELATED WORK
Existing methods for event detection can be

devided into two groups: feature-based methods
and neural network based methods.

Traditional approaches [1], [2], [3], [4], [5], [6]
usually rely on lexical features (such as Part-of-

Speech, lemma, named entity tag) and context
features (such as dependency parsing). However,
the performance of these approaches often depends
highly on the quality of the feature engineering
and these approaches inevitably suffer from error
propogation of external NLP tools.

Recently, deep learning techniques have been
widely used in many NLP tasks and also out-
perform the traditional methods for event detec-
tion. [7] implement a dynamic multi-pooling con-
volutional neural network that automaticly learn
effective feature representations for event trigger
detection. [8] use a bidirectional Long Short-
Term Memory model to handle multi-word events.
[9] develop a non-consecutive convolution neural
network to model the non-consecutive n-grams that
are crucial in some situations.

III. SYSTEM DESCRIPTION

In this work, we consider the event detection
and classification task as a classification problem
for every token in the input documents. We over-
look the multi-word event mentions and assume
event mentions to be only single tokens in text
to introduce the position information into neural
network models.

The Rich ERE annotation guidelines defines 7
event types and 18 event subtypes belonging to the
corresponding event types. We classify the event
mentions into their specific subtypes directly since
none of subtypes are shared by two or more event
types. That’s to say, we predict the tokens for 19
classes (18 subtypes plus one type for “NONE” if
it’s not an event mention).

Our preprocessing steps include sentence detec-
tion and tokenization using the Stanford CoreNLP
toolkit 1 .

A. Encoding

For every token in an input sentence, we
want to predict its event subtype. The current
word x0 along with its context in the same sen-
tence constitute an event mention candidate x =
[x−m,x−m+1, ...,x0, ...,xn−1,xn]. In order to prepare
the input of neural networks, we limit the length
of event mention candidate by trimming longer
sentences and padding shorter sentences.

1http://stanfordnlp.github.io/CoreNLP

Before entering the neural networks, each token
xi in the event mention candidates is transferred
into a real-valued vector using the concatenation
of two vectors:
• Word embedding of xi: Following the previ-

ous work, we use word embeddings to capture
the hidden sementic and syntactic properties
of tokens. Specificly, we use 300d pre-trained
word embeddings trained on a 6B token cor-
pus with GloVe [10] to initialize the word
embeddings.

• Position embedding of xi: It’s necessary to
specify which token is the predicted event
mention in the sentence. So we utilize the
position embedding to embed the relative
distance between xi and the current token x0.
The dimension of position embedding is set
to 10. We initialize this table randomly.

As a result the original event mention
candidate is transformed into a matrix
x = [x−m,x−m+1, ...,x0, ...,xn−1,xn] of size
d× l (d is the dimensionality of the concatenated
vectors of the tokens. l is the length of x, in this
case, l = m+ n+ 1). The matrix is then fed into
the neural network models.

B. Models

We mainly use three deep learning models in
our submission: CNN, RNN, RCNN and finally a
soft voting method for model ensemble:

1) CNN: Since the conventional neural network
(CNN) is capable of capturing consecutive n-gram
features from text, we design a CNN model fol-
lowing the previous works [7], [11]. Specificly,
we use multiple convolutional filters with different
widths to capture n-grams of various granularities.
Each convolutional layer is followed by a Batch-
Norm layer, ReLU activation and a MaxPooling
layer. The outputs of CNN with different filters
are concatenated to be the input of a two-layer
fully connected classifier with ReLU hidden units
and softmax outputs to compute the probability
distribution over the possible event subtypes for the
event mention candidate. An illustration of CNN
is given in Figure 1.

2) RNN: Besides CNN, we use a bidirectional
Long Short-Term Memory (BiLSTM) for event
detection. BiLSTM is a two-way recurrent neural

!"# !"$!"% !& !% !$!# !'

Encoding
PE

WE

Convolutional layer with
multiple filter widths and
feature maps	

Max-pooling

Two-layer	fully	 connected	
classifier	with	ReLU	and	
softmax	outputs

Fig. 1. An illustration of CNN model

network which can model both preceding and
following contexts.

ℎ
ℎ

ℎ
ℎ

ℎ
ℎ

ℎ
ℎ

ℎ
ℎ

ℎ
ℎ

ℎ
ℎ

ℎ
ℎ

"#$ "#% "#& "' "& "% "$ "(

Encoding

)*+,-

2-max
Pooling

PE

WE

)*+,.

Fully	connected	classifier		
and	softmax	outputs

Fig. 2. An illustration of BiLSTM model

As presented in Figure 2, BiLSTM is composed
of two LSTM neural networks, a forward LST MF
to capture the preceding context information and
a backward LST MB to capture the following
context information. In particular, the input
sequence of BiLSTM is the encoding matrix
of the event mention candidate, denoted by
x = [x−m,x−m+1, ...,x0, ...,xn−1,xn]. For LST MF
, we compute the hidden state hi based on
the current input xi and the previous hidden
state hi−1 at each time step i. This process
is conducted over x to get the hidden state
sequence

−→
h (x−m,x−m+1, ...,x0, ...,xn−1,xn) =

(h−m,h−m+1, ...,h0, ...,hn−1,hn). Then for
LST MB we run the LSTM in the reverse
direction of the input sequence from xn to

x−m to generate the second hidden state
sequence

←−
h (xn,xn−1, ...,x0, ...,x−m+1,x−m) =

(h
′
n,h

′
n−1, ...,h

′
0, ...,h

′
−m+1,h

′
−m). Afterwards,

we concatenate the output
−→
h of LST MF with

the output
←−
h of LST MB at each time step i:

fi = [hi,h
′
i].

Instead of using the hidden state of the last time
step fn = [hn,h

′
n], we feed the output features of

each hidden state to a dynamic k-max pooling
layer. Dynamic k-max pooling [12] is a generalisa-
tion of the max pooling operator. Unlike max pool-
ing operator, which returns the single maximum
value, k-max pooling returns the subsequence of
k maximum values to reserve more information in
the sequence. Afterwards, the resulting vector is
then used as input for a two-layer fully connected
layer with ReLU hidden units, followed by a
softmax layer.

3) RCNN: We build another neural network
model which is a bit different from the RNN model
presented in the last section.

Similarly, we use a BiLSTM to capture both
preceding and following information. The output
features of each hidden state are concatenated as
fall . In order to enrich the fall , we concatenate
it with fem, which is the embeddings of tokens
in the event mention candidate. The resulting con-
catenated vector [fall, fem] is then used as the input
of a CNN block whose architecture is similar to
our CNN model. In particular, the CNN block has
a convolutional layer followed by a BatchNorm
layer, ReLU activation and a MaxPooling layer.
Since we use a CNN block here to capture the
chunk feature of BiLSTM, we believe one con-
ventional filter (with width of 3) is sufficient. The
outputs of the CNN block pass through a two-layer
fully connected classifier with ReLU hidden units
and softmax outputs.

4) Ensemble: In order to improve generaliza-
tion and robustness over single predictors, we
emsemble multiple independently trained models.
Due to the limited time, we only apply a simple
soft voting strategy to ensemble CNN, RNN and
RCNN models presented in the previous sections.
Soft voting returns the class label as argmax of
the weighted sum of predicted probabilities. We
assign different weights to CNN, RNN, RCNN
respectively to maximum the performance.

5) REALIS classification : In the above sec-
tions, we presented our systems for event type clas-
sification. The similar encoding and network can
be adapted to event realis classification. Instead of
predicting the tokens for 19 classes, we only need
to classify the event tokens into 3 REALIS types
(ACTUAL, GENERIC, or OTHER).

6) Implementation: We train the neural net-
work models using stochastic gradient descent
with shuffled mini-batches (batch size = 128) and
AdaDelta update rule [13]. The fixed length of the
event mention candidate is set to 61. In CNN,
we use the window size of [2,3,4,5] to generate
conventional filters. We utilize 100 filter size for
each convolution window size. As for RNN, we
use 256 hidden units and 2-max pooling. The
parameters in RCNN is similar to CNN and RNN
other than the single conventional filter (with width
of 3). In ensemble method, we set the weights
of [1,2,1] to CNN, RNN, RCNN respectively for
event detection and classification and [2,2,1] for
event realis classification.

IV. EXPERIMENT

A. Dataset

We use the following corpora as our training
data:
• The training and evaluation data for TAC KBP

2015 event nugget task
• The DEFT Rich ERE English Training

Annotation (LDC2015E29, LDC2015E68,
LDC2015E31)

We use the evaluation data for TAC KBP 2016 as
our development data. Since the TAC KBP 2017
event nugget task defines a smaller set of event
types than TAC KBP 2015 and the DEFT Rich
ERE English Training data, we only use event
nuggets in these two corpora whose event types are
included in the evaluation this year. Considering
the imbalance of training data, 10 negative samples
are choosed randomly for training.

B. Evaluation

We submitted three runs to the Event Nugget
Detection evaluation this year. The runs are dif-
ferent in the type of neural networks used in the
two components: event detection and classifica-
tion (called TYPE) and event realis classification

(called REALIS). The configuration of the runs are
presented in Table 1.

TABLE I

MODELS FOR DIFFERENT RUNS

Runs TYPE REALIS
zy1 RNN CNN
zy2 Ensemble model Ensemble model
zy3 CNN CNN

Due to the poorer performance of system zy3,
we only present the performance of the first two
systems. The performance on the development data
and official evaluation data for English is presented
in Table 2 and Table 3 respectively. These tables
include the precision, recall and F1 scores for event
detection (plain), event classification (type), realis
classification (realis), type and realis classification
(all). All the scores are computed by the official
scorer.

TABLE II

PERFORMANCE ON THE DEVELOPMENT DATA

Run Attri Micro Average Macro Average
Prec Rec F1 Prec Rec F1

zy1

plain 56.96 59.08 57.86 53.50 55.67 54.56
type 46.13 48.07 47.08 43.30 45.36 44.30
realis 43.79 45.63 44.69 40.84 42.44 41.62

all 35.73 37.23 36.46 33.08 34.68 33.86

zy2

plain 61.74 54.99 58.17 58.55 51.79 54.96
type 52.36 46.64 49.33 49.59 44.10 46.68
realis 48.43 43.14 45.63 45.23 40.20 42.57

all 41.24 36.74 38.86 38.55 34.39 36.35

TABLE III

PERFORMANCE ON THE OFFICIAL EVALUATION DATA

Run Attri Micro Average Macro Average
Prec Rec F1 Prec Rec F1

zy1

plain 58.23 46.05 51.43 59.91 47.24 52.83
type 48.11 38.05 42.49 49.75 39.45 44.01
realis 43.51 34.41 38.42 45.48 35.75 40.03

all 35.61 28.16 31.45 37.51 29.60 33.09

zy2

plain 64.29 43.14 51.64 65.33 44.21 52.73
type 55.22 37.06 44.35 56.12 38.10 45.38
realis 49.28 33.07 39.58 50.45 33.96 40.59

all 41.87 28.10 33.63 42.85 28.87 34.50

C. Discussion

As we can see from the tables, there’re sig-
nificant performance drops over micro-average
scores between development data and test data.
The macro-average weights equally all the classes,
regardless of how many documents belong to it.
The micro-average weights equally all the docu-
ments, thus favouring the performance on common
classes. This demonstrates there exists over-fitting
especially on common classes.

Furthermore, the recall scores drop much over
all the subtasks and systems. First, these drops
could be attributed to the differences between
development data and test data to a certain extent.
Second, from the annotated test data, we find
an event mention can belong to more than one
event subtypes. However, we only classify each
event candidate as an event of specific subtype
or a non-type. Third, we assume event mentions
to be single tokens and don’t consider the event
mentions containing multiple tokens.

Another limitation is the encodings of event
mention candidates. We simply use pre-trained
word embeddings from GloVe in the model ini-
tialization. In stead it might be more suitable to
train our own word embeddings on a large corpus
similar to the TAC KBP corpus such as NYT
corpus. This is a commonly used technique in
previous works [14], [15]. And we could introduce
more features such as named entity tags, event
arguments and dependency features inspired by
previous works[11], [9].

Last but not least, we could use more data
resources such as ACE 2005 considering the small-
ness of training data and cope with the imbalance
of training data.

V. CONCLUSIONS

We develop three systems based on neural net-
works to participate in Event Nugget Detection
task this year. Compared with feature-based ap-
proaches, which require complicated feature engi-
neering, our systems use only word embeddings
as external resources and can be directly applied
to different languages. Compared with previous
neural models, our systems combine CNN and
RNN to capture both chunk features and long-
dependencies in a sequence. Our systems obtain

promising performances in the final evaluation but
have room to improve.

REFERENCES

[1] D. Ahn, The stages of event extraction, in: Proceedings of
the Workshop on Annotating and Reasoning about Time and
Events, Association for Computational Linguistics, 2006, pp.
1–8.

[2] H. Ji, R. Grishman, et al., Refining event extraction through
cross-document inference., in: ACL, 2008, pp. 254–262.

[3] S. Liao, R. Grishman, Using document level cross-event
inference to improve event extraction, in: Proceedings of the
48th Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, 2010,
pp. 789–797.

[4] Y. Hong, J. Zhang, B. Ma, J. Yao, G. Zhou, Q. Zhu, Using
cross-entity inference to improve event extraction, in: Pro-
ceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-
Volume 1, Association for Computational Linguistics, 2011,
pp. 1127–1136.

[5] Q. Li, H. Ji, L. Huang, Joint event extraction via structured
prediction with global features., in: ACL (1), 2013, pp. 73–82.

[6] Q. Li, H. Ji, Y. Hong, S. Li, Constructing information net-
works using one single model., in: EMNLP, 2014, pp. 1846–
1851.

[7] Y. Chen, L. Xu, K. Liu, D. Zeng, J. Zhao, et al., Event
extraction via dynamic multi-pooling convolutional neural
networks., in: ACL (1), 2015, pp. 167–176.

[8] R. Ghaeini, X. Fern, L. Huang, P. Tadepalli, Event nugget
detection with forward-backward recurrent neural networks,
in: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers),
Vol. 2, 2016, pp. 369–373.

[9] T. H. Nguyen, R. Grishman, Modeling skip-grams for event
detection with convolutional neural networks., in: EMNLP,
2016, pp. 886–891.

[10] J. Pennington, R. Socher, C. Manning, Glove: Global vectors
for word representation, in: Proceedings of the 2014 confer-
ence on empirical methods in natural language processing
(EMNLP), 2014, pp. 1532–1543.

[11] T. H. Nguyen, R. Grishman, Event detection and domain
adaptation with convolutional neural networks., in: ACL (2),
2015, pp. 365–371.

[12] N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolu-
tional neural network for modelling sentences, arXiv preprint
arXiv:1404.2188.

[13] M. D. Zeiler, Adadelta: an adaptive learning rate method,
arXiv preprint arXiv:1212.5701.

[14] X. Feng, L. Huang, D. Tang, H. Ji, B. Qin, T. Liu, A
language-independent neural network for event detection, in:
Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers),
Vol. 2, 2016, pp. 66–71.

[15] S. Liu, Y. Chen, S. He, K. Liu, J. Zhao, Leveraging framenet
to improve automatic event detection., in: ACL (1), 2016.

