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Summary
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• Task 1: CRFs on morphological + embedding-based features;

CRFs on morphologic, constituency, dependency, and gazetteer–

based (VigiAccess) features with an extended topology

• Task 2: Logistic Regression on morphological, semantic, and

syntactic features.

• Task 3 & 4: Rule-based approach using MetaMap + sub-term

mapping tool (STMT) + abbreviation extraction



Part I - Extraction

3



An Important Task

• Extract clinically relevant entities (e.g., ADRs, drug classes)

• A crucial component in drug labels

• Compare ADRs extracted from different labels [1]

• Conduct pharmacovigilance by identifying new ADRs [2]
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Data
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ADR Animal Drug Class Factor Negation Severity
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(2,208)
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Data

• TAC ADR 2017 [3] – Official training Set

• VigiAccess.org [4] – 18,310 unique ADRs from VigiBase

• MIMIC III [5] – A large critical care database (clinical notes)
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ADRs Extraction

• Feature Extraction:

• Normalized tokens e.g., fibrosis, nausea, grade D (normalized from 4) proteinuria

• POS tags e.g., NNP, CD, VB

• Word embeddings: 100D word vectors [6] trained from:

• MIMIC III clinical notes

• TAC ADR 2017 official training set – 2,309 drug labels

• Window size on tokens and POS tags: ± 2 [7]

• 5-fold Cross Validated on CRFs

• 101 annotated records
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Results: ADRs Extraction

F1-measure (exact match) on the training and test sets
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Dataset Vectors ADR Animal Drug Factor Negation Severity Micro-Avg

Training MIMIC III 0.756 0.798 0.155 0.523 0.258 0.587 0.730

Training TAC 0.762 0.786 0.143 0.532 0.309 0.592 0.735

Test 1 TAC N/A N/A N/A N/A N/A N/A 0.701

Test 2 N/A N/A N/A N/A N/A N/A N/A 0.629

Test 1: Results from the 1st and 2nd run. Test 2: Result form the 3rd run.



Discussion

• Entities that contain multiple or overlapped phrases

increased alanine transaminase (ALT) 

M1: increased alanine transaminase

M2: increased ALT

exacerbation of pre-existing diabetes mellitus 

M3: exacerbation diabetes mellitus
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ADRs Extraction

• A pure machine learning-based system

• Small feature set

• Word embeddings trained on TAC ADR (dataset)

• No external resource (1st and 2nd run, task 1)
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Part II – Normalization

11



12

Task 3

• Identifying positive ADRs

• Not independently performed

• Rule-based filtering from the output of the previous 

2 tasks

• Find no exception on the training set
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Task 4
• Normalization of positive ADRs

• Rule based approach

- robust pre-existing tools such as MetaMap, Mgrep, 

Negfinder, Peregrine, etc

- lack of training data (2,927 unique instances from 

101 files)
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MetaMap
• BioMedical concept detector developed by Dr. Alan 

Aronson at NLM[8]

• Tested various combinations of MetaMap options

• NLM database with ‘Term Processing’ and ‘Ignore 

Word Order’ option

- (by Term Processing) Inputs are not chunked into separate component



15

Abbreviation Extractor

• Frequent usage of abbreviation in drug labels

• Needs to reduce ambiguity from the use of 

abbreviation

(Example 1) SJS – Schwartz-Jampel Syndrome /

Stevens-Johnson Syndrome

(Example 2) PML – Not recognized by MetaMap
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Cases when AE's effective

• When NER system fails to detect full expansions.

• When abbreviations are combined with other words and make 

different medical concept.

(Examples) increased AST (Aspartate Aminotransferase), increase in 

ALT (Alanine Aminotransferase), extrapulmonary TB (Tuberculosis), 

pulmonary TB (Tuberculosis)
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Abbreviation Extractor
<ADCETRIS® Label >

• Collect acronyms and build dictionary for each drug label

• Substitute abbreviations with full expansions
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STMT

• Another BioMedical concept detector developed by Dr. 

Chris Lu at NLM[9]

• Chunked inputs into separate components

- find sub-terms and their synonymic terms

- substitute sub-term with synonymic terms to find relevant 

CUI

(Example) ‘Fetal Harm’ : not recognized by MeteMap

STMT detects and substitutes ‘harm’ to the synonymic term, ‘damage’

-> ‘Foetal Damage’
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Result

<F1-measures of Task 3>

* The score on the training set is assuming we have perfect outputs 

from previous tasks.
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Result

<F1-measures of Task 4>

* The score on the training set is assuming we have perfect outputs 

from previous tasks.
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