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Document Level Event Extraction

• Argument Assertions e.g. (Contact.Meet, Place, Pittsburgh, Actual)
1. Logistic regression to identify (1) event –focused terms and (2) 

roles/arguments for events
• Two argument classifiers: one that depends on event-focused terms, the second relies of just 

identifying a role in the argument context
2. Identify a canonical string for the argument using

• SERIF within document coreference
• SERIF time normalization

3. ERE-based trained classifier for distinguishing ACTUAL/GENERIC
• Syntactic rules for identifying past/negated as OTHER

4. Joint optimization using system confidence of 1-3
5. World-knowledge based inference using event structure

• Within document event frame creation
– Sieve-based system that relies on argument overlap, argument conflict, and 

syntactic links between arguments and event-focused terms
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2017 Updates

• Incorporated additional training data
– More Rich ERE
– Event Nugget Training
– BBN-developed targeted training

• Incorporated additional event types
– Contact.Broadcast
– Contact.Contact
– Transaction.Transaction
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Challenges with Contact.Broadcast

• Rich ERE only marks the first mention of a  
Contact.Broadcast, subsequent mentions are 
ignored
– Unmarked RichERE text is ambiguous between

• Negative example for Contact.Broadcast
• 2nd, 3rd, 4th,…. positive example of a Contact.Broadcast event

• System trained exclusively with targeted training 
on EAL dry-run data
– Many false alarms that seem like annotation errors
– Contact.Broadcast annotation agreement may be low 

enough to interfere with measuring system performance
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Targeted Training (1)
• Core challenge of EAL task is sparsity of training data

– Many annotated documents
– Few positive examples of events

• Develop targeted event annotation using human intuitions about 
event contexts
– Ask annotator to find useful examples
– Let annotator skip hard examples

• Annotation process
– Annotator asked to come up with a list of likely event-related phrases

• Nuggets OR other words likely to be associated with an event 
– Annotator searches & then marks ~10 examples per-term

• Only marks sentences with one event mention (and may skip confusing sentences)
• Marks all words that could be considered an event trigger 
• Marks arguments

– Annotator asked to mark negative examples in the surrounding context (e.g. 
sentence N-1 does not contain a Contact.Meet event)

– Annotator revises list to include additional event words
• Resulting annotation is

– Dense in events
– Likely to contain multiple syntactic contexts for arguments <-> triggers
– For polysemous triggers, likely to contain positives and negatives
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Targeted Training (2) 

• 2015: Annotated ~5.8K positive & 6.4K negative 
sentences
– Each sentence for a single event type 

• 4-8 hours per event type for all event types
• Additional annotation for a few event types where we observed poor system 

performance 
– 2015 TAC system used only trigger annotation

• ~12% relative improvement on argument score for system (BBN1 vs BBN2)
– Arg F1: BBN2 35.5 
– Arg F1: BBN1 38.0 (rank 1)

• 2016: Additional annotation for new event types
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P R F1
No	spannotator 26.3 26 26.2
Target:Trigger 26.1 26 26.1
Target:Trigger+Arg 28.1 26.2 27.1

2016	Dry	Run	Data:	All	Event	Types



Context Embeddings (2015)

• Event arguments can often be distant from event 
triggers

• But often the argument context is informative
– The knife-wielding man was tackled by a bystander, 

but only after three people were severely injured in 
the attack.

– Acme Inc.’s creditors were disappointed by Friday’s 
bankruptcy filing.

• We would like to learn informative argument 
contexts which never appear in our supervised 
training data based on those which do

7



Context Embeddings: AA (2015)

• We trained dense vector representations of the 
normalized dependency trees contexts of words 
on Gigaword(s) using a variant of the skip-gram 
model due to (Levy & Goldberg, ‘14)

• We include this representation in our AA model
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Context Embeddings: AA (2015)

• Internal development tests on KBP-2014 EA 
newswire eval corpus (English)
– Embeddings improve on 2014’s best system (BBN1), 

scored using 2014 EA scorer
• 2015’s BBN1 used context embeddings, 2015’s 

BBN3 did not
– ~10% relative improvement from context embeddings

• Context embeddings used in all languages in 
2017
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CROSS DOC EVENT FRAME 
COREFERENCE
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Cross Document Event Coreference 
• Task: Identify coreferent event frames across corpus
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MEET
GID:	M1

Role Fillers
ENTITY • Turkey

• 28	EU	member	states
• the presidents	of	European	Council…

LOCATION Brussels
DATE 11-29-2015

MEET

GID:	
M2

Role Fillers
ENTITY • Mehment Simsek

• EU
LOCATION Brussels
DATE 12-14-2015

MEET
GID:	M2

Role Fillers
DATE 12-14-2015

MEET
GID:	M1

Role Fillers
ENTITY • EU	heads of	government

• Ahmet	Davutoglu
LOCATION Brussels
DATE 11-29-2015

Event-1 Event-2

• System can (and probably needs to) use
– Information that is available in the event frames
– Information directly derived from the document
– Information provided by other automatic processes

• Cross-document entity coreference (EDL)
• Event nuggets and their context
• Discovered topics
• …



Challenges
• Imperfect automatic 

event-frame detection
– Top performing 2015 system: 

• Precision: 36.8
• Recall: 39.2 
• Linking F1: 23.3

• Event-frames represent a snapshot of what goes into a 
knowledge-base, not all of the information necessary for 
coreference decision
– Marjorie Freedman and Jason Duncan both attended 3 distinct meetings 

09-29-2016 

• Event nuggets do not provide same discrimination as entity 
names
– Nuggets for the 09-29-2016 meetings would be: attend or telecon

• Currently, no frame-level exhaustive training data
– Small number of assessments from pilot
– Even when training data exists, it is likely to be small in quantity
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BBN Approach: Overview

• Pipeline of decisions
– Find arguments (previous section)
– Link arguments into per-document event frames 

(previous section)
– Cluster event-frames across the corpus using event-

type (and role) specific intuitions
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BBN Approach: Argument Specific Intuitions

• Define per-role equivalence
– TIME: Year, month, and day (if available) relying on 

SERIF’s Timex normalization
– PLACE: Containment of GeoNames’ Admin districts
– AGENT/ENTITY/etc.: 

• For named entities, AWAKE cross-document coreference
• Ignore non-named entities (e.g. 7 soldiers, the crowd)

• Event Frame Coreference heuristics include
– Specific roles that must be matched (e.g. TIME or PLACE)
– Minimum number of arguments that must be matched (e.g. 

at least three arguments)
– Maximum number of

• Documents in which an event can be mentioned
• Distinct arguments in an event



Thanks!


