A Collection of Techniques for Improving Neural Entity Detection and Classification

Huasha Zhao, Yi Yang, Qiong Zhang, Luo Si huasha.zhao@alibaba-inc.com iDST, Alibaba Group San Mateo, CA

Agenda

- Introduction: Bidirectional LSTM-CRF
- Features: Multi-Input Model
- Training: Multi-Task Learning
 - Adaptive Data Selection
- **Prediction**: Document-level Consistency
 - Dictionary-based
 - Model-based
- Conclusions

Introduction: Bidirectional LSTM-CRF

- Achieves state-of-the-art performance for many sequence labeling tasks
- Generalize well due to simple model structure and few parameters
- Very **flexible** architecture, easy to incorporate new ideas
 - Multi-input: include new features
 - Multi-task for transfer learning natural for hierarchical architecture

Multi-Input Model: Architecture

- Multi-Input model that includes embeddings from
 - word embeddings (GloVe)
 - character embeddings (BiLSTM)
 - entity embedding
 - gazetteer using freebase title
 - ...

Tomorrow

- Entity embeddings
 - Token entity type distribution derived from a Wikipedia Name Tagger (Pan, 2017)
 - Construct embedding by concat such distributions w. additional position features

Multi-Input Model: Entity Embedding

- Entity embedding feature significantly improve the NAM prediction by 3.3 F1 point
- Freebase feature actually worsen the performance
 - Many common words entities
 - Potential improvement with page rank features
- Dictionary constructed from other sources does not help either

Methods	NAM	NOM	Overall
baseline	0.809	0.587	0.748
+ entity embeddings	0.842	0.587	0.770

Table 1: Effectiveness of additional entity embeddings in model embedding layer.

Multi-Task Learning: Architecture

- The hierarchical architecture of BiLSTM-CRF is very natural for **multi-task learning**.
- Bottom components can be **shared** across task/domain.

Multi-Task Learning: Adaptive Data Selection

Repeat:

- Multi-task training can alleviate some of the problem caused by data heterogeneity between target and source.
- Data selection algorithm that further removes noisy data from source dataset.
- At each iteration, data selection from the source domain is **interleaved** with model parameter updates.
- Training data is selected based on a consistency score.

1. Train the model for one iteration, by optimizing the following instance weighted object function,

$$J = \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} p(\mathbf{y} | \mathbf{x}; \theta^{\mathcal{T}}) + \sum_{(\mathbf{x}', \mathbf{y}') \in \mathcal{S}_t rain} p(\mathbf{y}' | \mathbf{x}'; \theta^{\mathcal{S}})$$

2. Compute consistency score for each training example in S,

$$s(\mathbf{x}) = \max_{i} \sum_{j} p(x_i = j) \log \frac{p(x_i = j)}{q(x_i = j)},$$

where $p(x_i) \sim softmax(\phi^{\mathcal{T}}(x_i))$ and $q(x_i) \sim softmax(\phi^{\mathcal{S}}(x_i)));$

- 3. Construct S_{same} , S_{diff} by the following, $S_{same} = \{ \mathbf{x} \in \mathcal{X}^S : s(\mathbf{x}) < \alpha \}$ and $S_{diff} = \{ \mathbf{x} \in \mathcal{X}^S : s(\mathbf{x}) > \beta \};$
- 4. Update source training set S_{train} , $S_{train} \leftarrow S_{train} \cup S_{same} \setminus S_{diff}$. Until: $|S_{diff}| < k$

Multi-Task Learning: Experiments

- We use ACE and ERE as source dataset and KBP as target
- MT does not improve NAM at all
- MT and data selection significantly improves NOM
- Sentences with plural form nouns are removed from source, since they are annotated differently from target

Methods	NAM	NOM	Overall
baseline +	0.842	0.587	0.770
entity embeddings	0.042	0.387	0.770
+MT	0.841	0.626	0.786
+MT + adaptive	0.842	0.634	0.788
data selection	0.042	0.034	0.700

Table 2: Effectiveness of training data consistency.

Doc-level Consistency: Dictionary Based and Model Based

- Observations: NER predictions are not consistent across document. E.g. 'Microsoft' are detected in one sentence but not others; 'MS' is hard to predict without document level contexts.
- Dictionary-based approach:
 - build a entity dictionary from the predictions in the first pass
 - expand the dictionary using a KB (Wikipedia redirect links)
 - match the document with the dictionary in a second pass
- Model-based approach:
 - Build a model that takes predictions of first pass to generate final prediction
 - RNNs suffer **short memory** and **computational expensive**
 - We resorts to use CNN models

ID-CNN (Strubell, 2017)

- CNN
 - Better memory, faster computation
- Dilated CNN
 - context not consecutive
 - dilated window skips every d inputs
 - Effective context grows exponentially as d grows exponentially
- Iterated Dilated CNN
 - Parameter sharing for stacked DCNN blocks; avoid overfitting

Figure 1: A dilated CNN block with maximum dilation width 4 and filter width 3. Neurons contributing to a single highlighted neuron in the last layer are also highlighted.

Doc-level Consistency: Experiments

- Simple document-level dictionarybased approach performs as good as model-based approach on NAM task
 - Corpus-level dictionary deteriorates the performance
- Model-based approach capture additional dependencies of NOM task
- Future work to combine sentence level and doc level into single model

Methods	NAM	NOM	Overall
baseline +	0.842	0.587	0.770
entity embeddings	0.042		
+ label consistency	0.851	0.587	0.778
(dictionary based)	0.031		
+ label consistency	0.850	0.595	0.779
(model based)	0.050	0.393	0.779

 Table 3: Effectiveness of prediction label consistency.

Final Results with Model Ensemble

- English NERC results for EDL 2016/17
- **1.6 F1 point** improvement with model ensemble
- 0.7 F1 point improvement with additional training data

Ensemble config	Precision	Recall	F1
Single model	0.833	0.760	0.795
2/4 voting	0.827	0.790	0.808
3/4 voting	0.850	0.776	0.811
Union of two 2/4	0.831	0.791	0.811

Table 4: Overall F1 score with different ensembleconfigurations.

Year	Our F1	Best F1
2016	0.804	0.772
2017	0.811	0.811

Table 5: Performance comparison between 2016and 2017 datasets.

Conclusions

- Submitted English name tagging and achieved F1 0.811-ranking 1st
- Evaluate and experiment a collection of methods to improve stateof-the-art neural NER model
- External high quality gazetteer works, but **not all-inclusive** ones
- Additional training data works, and **instance selection** further helps
- Simple doc-level consistency constraints can work reasonably well

Thanks

