The TAI System for Trilingual Entity Discovery and Linking Track in TAC KBP 2017

> Tao Yang, Dong Du and Feng Zhang Tencent AI Platform Department

Outline

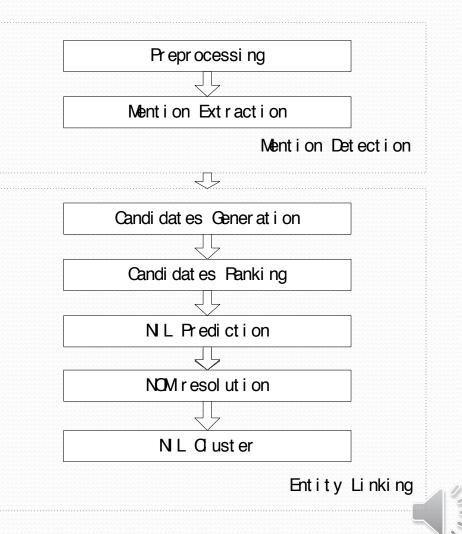
- Task Description
- The TAI System
 - Mention Detection
 - Entity Linking
- Results

Task Description

- Mention extraction and entity linking in three languages: Chinese, English and Spanish.
 - BaseKB as the target knowledge base
 - Two types of documents: newswire and discussion forum
 - Five entity types: PER, LOC, ORG, GPE, FAC
 - Two mention types: named (NAM) and nominal (NOM)
 - Cluster NIL mentions

The framwork of TAI System

- Two sub-systems
 - Mention Detection
 - Pre-processing
 - Mention extraction
 - Entity Linking
 - Candidates generation
 - Candidates ranking
 - NIL prediction
 - NOM Resolution
 - NIL Cluster

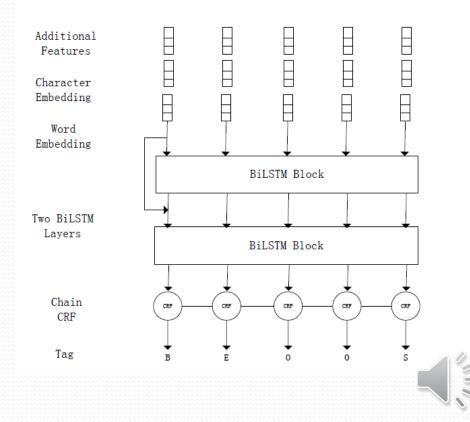


Preprocessing

- Remove XML tags
- Remove URLs and quote texts from the discussion forum
- Convert traditional characters to simplified characters for Chinese
- Extract the authors from newswire and discussion forum
- Tokenize English and Spanish texts using CoreNLP tool
- Character sequence instead of word sequence for Chinese

Architecture

- Sequence labeling problem
- Two-layers stacked BiLSTM + CRF model
- Skip connections
- Ensemble of two models
- Multiple types of features
 - word embedding
 - character embedding
 - additional Features

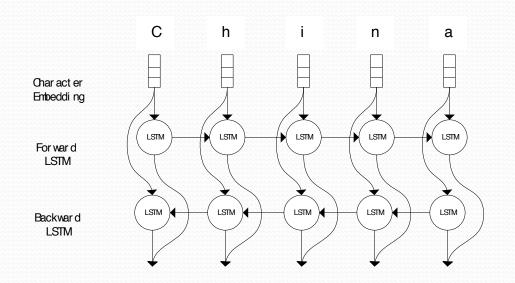


Word Embedding Feature

- Pre-training from the Gigawords data
- Training tool is wang2vec[1]
- For Chinese, the character embeddings are enhanced by the positional character embeddings[2]

Character Embedding

- Another BiLSTM to generate the character embeddings
 - Solve the out of vocabulary (OOV) problem
 - Model the word's prefix and suffix feature



Additional Features

- Dictionary feature: collected entities from Wikipedia and Baike.
- POS and NER feature: the POS and NER results produced by CoreNLP and QQseg.
- Word boundary feature: indicates whether current Chinese character is at the word's boundary or inside the word.
- NOM's feature: NOM mention's previous word

Candidates generation

- Generate entities' aliases
 - BaseKB entities' name
 - Wikipedia's page title
 - Wikipedia's anchors
 - Wikipedia's disambiguate pages
 - Google translation service
 - Split the person's name
 - Baike aliases resource
- Generate mention's candidate
 - Search the alias-to-entities dictionary, exact and fuzzy matching
 - Whole document searching for substring matching: such as "Bush" and "George Bush"

Candidates Ranking

- Model: Pair-wise learning to rank model, called LambdaMART
 - The target entity should be ranked higher than any other entities.
- Features:
 - Popular features
 - Type features
 - Matching features between context and entity
 - Semantic relatedness features

• Candidates Ranking - Popular Features

- Page rank score based on the Wikipedia's anchors
- Page rank score based on the BaseKB
- Wikipedia pages' language number

Mention linking probability

 $link_prob(m,c) = \frac{count(m,c)}{\sum_{c'} count(m,c')}$

Candidates Ranking - Types Features

- Document types: NW or DF
- Mention's entity types: PER, LOC, ORG, FAC and GPE
- BaseKB's entity types

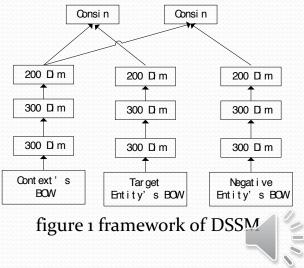
	organization.organization					
	location.location					
	geography					
	location.country					
	location.administrative					
	division					
location.statistical_region						
	people.person					
	architecture.structure					
government.governmental_body						
b	ase.newsevents.news_reporting_organisation					
	government.government					
	government.legislative_committee					
	aviation.airport					
	education.educational_institution					
	base.prison.prison					
	government.governmental_jurisdiction					

Table 1: The selected entity type in BaseKB as EL ranking features.

Candidates Ranking - Matching features

- Word similarity between the entity and the context based on bag of words
- Semantic similarity between the entity and the context based on DSSM model[1]
 - The framework of DSSM model is shown in figure 1.
 - Pre-training using the Wikipedia's anchors, and fine-tune using the training data
 - Pair-wise loss function:

 $L = max\{0, M - (cos(e_t, c) - (cos(e_i, c)))\}$

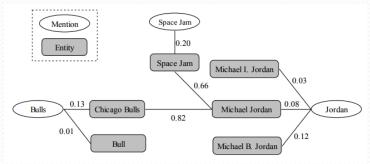


• Candidates Ranking - Semantic Relatedness Features

Max WLM score between current entity and the other mentions' candidate entities

$$WLM(e_1, e_2) = 1 - \frac{\log(\max(|S(e_1)|, |S(e_2)|) - \max(|S(e_1) \cap S(e_2)|))}{\log(|W|) - \log(\min(|S(e_1)|, |S(e_2)|))}$$

- Global coherent score[1]
 - Graph-based method
 - Mention-to-entity and entity-to-entity edges
 - Bag of words cosine and WLM score
 - Personalized page rank to resovle



• NIL Prediction:

- Motivation:
 - The top ranked entity may be not right
- Model:
 - A binary classification is trained to make the decision
- Features:
 - All the ranking model's features
 - Ranking score
 - Differential between 1st and 2nd score
 - Differential between the 1st and mean score
 - Standard deviation of all the scores

NOM resolution

- Link the mentions in the pre-compiled dictionary directly, such as "中方(Chinese Government)"
- Link to the named mention with most occurring times in the document, such as "Country"
- Link to the neatest named mention with the same type
- For each pair <m_{nom}, m_{nam}>, a simple binary classification model is trained to classify whether m_{nom} can link to target m_{nam}, where m_{nam} is a named mention in m_{nom}' context.

- NIL Cluster
 - Authors and Body's mentions are clustered altogether
 - Clustering mentions in the same document, if mention span is the same
 - Clustering partial match mentions, if they are PER types
 - Special rules, such as "楼主" in Chinese discussion forum texts, always cluster it with the first author

Results

The trilingual results of our best run(according to the typed_mention_ceaf):

323	strong_typed_mention_ceaf			strong_typed_all_match			typed_mention_ceaf		
	Prec.	Rec.	F1	Prec.	Rec.	F1	Prec.	Rec.	F1
	85.0	68.6	75.9	76.0	61.3	67.8	79.0	63.7	70.5

Conclusion

- Our system achieved competitive results
- Nominal mentions' detection and linking is much harder than named mentions', need to try more complicated models or incorporate more features
- NIL clustering is mainly based on rules, further exploration is needed

rigorosyyang@tencent.com Tencent Al Platform Department

