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Abstract 

We describe the BBN submission to the 

TAC 2018 Streaming Multimedia 

Knowledge Base Population (SM-KBP) 

track. We apply a variety of extraction tools 

to acquire information from videos, images, 

and text regarding persons, places, 

relationships, and events of interest in the 

targeted evaluation scenario. 

1 Introduction 

Data provided by NIST and LDC was 

analyzed by a series of natural language 

processing and image analysis modules trained 

on a general purpose corpora. Information in 

the form of “knowledge elements” relevant to 

the provided scenario were extracted to 

produce a knowledge graph intended for 

hypothesis generation. 

2 Panorama Pipeline 

Figure 1 depicts the Panorama pipeline, 

including all individual components and 

possible workflows. Our pilot evaluation 

submission was constructed by individually 

running each analytic in turn over the 

appropriate documents. Each pipeline 

component is run with parallel processing 

using automated scripts, but the initiation of 

each pipeline component on the appropriate 

data requires human intervention.  

Figure 1: Panorama Pipeline Components and Workflows 
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3 Language ID 

For the pilot evaluation, we considered relying 

on the language labels assigned to each input 

document in the metadata provided by LDC. 

However, our tests on the video data found 

that the LDC-provided labels were unreliable, 

so we attempted to automatically determine 

the source language. For text files we used the 

best scoring classification produced by the 

open source Compact Language Detector 2 

Naïve Bayes classifier1.  When the best 

scoring classification was not one of the 

expected program languages, we fell back to 

using the LDC-provided language. For audio 

we trained an acoustic language ID model, but 

found it had poor performance and chose to 

use LDC’s labels for the pilot evaluation. 

To handle optical character recognition 

(OCR), we ran each file through our pipeline 

as if it were each of the three program 

languages. We then provided to the 

downstream components the extraction output 

from treating the document element as each of 

the three languages. We anecdotally found that 

applying text extraction to the output of OCR 

from the incorrect language paths produced 

few false positives. 

In future work we plan to test whether the 

quantity of information extracted as 

knowledge elements can be used as the 

heuristic for choosing the correct source 

language. 

                                                           
1 https://github.com/CLD2Owners/cld2 

4  Speech-to-Text 

Automatic Speech Recognition (ASR) was 

used to extract a text transcript from audio 

files in English, Russian, and Ukrainian. In 

this context, the audio files were strictly the 

audio tracks from the provided videos. The 

videos were in .mp4 format, and we extracted 

the audio track in .wav format using the free, 

open source tool FFmpeg2. We converted the 

resulting .wav files to 16 KHz, 16-bit, NIST 

sphere format, the preferred format for BBN's 

speech recognizer. 

For each audio file, we produce a transcript in 

which each word is annotated with its start 

time and duration. This represents our one-best 

output. A consensus net with all possible paths 

per utterance is also constructed, but was not 

used downstream in the pilot evaluation. The 

training data used to create acoustic and 

language models for the three evaluation 

languages is shown in Table 1. 

We were only able to apply ASR in the 

unconstrained condition due to the provenance 

of the training data. For the evaluation, we 

processed 1,029 video files that contained 

roughly 114 hours of audio. 

We tested each trained model against a target 

domain test set consisting of human-annotated 

audio files from the AIDA seedling data for 

each language.  

2 https://ffmpeg.org/ 

Table 1: Resources for ASR training 

Data Type Russian Ukrainian English 

Audio BBN broadcast news 

data (99 hours) 

AIDA seedling audio files, 

human transcribed (1.4 

hours) enhanced with i-

vectors from Russian audio 

BBN broadcast news data 

(1,642 hours) 

Text AIDA seedling corpus 

LTF documents; 

Russian Wikipedia 

AIDA seedling corpus LTF 

documents; Ukrainian 

Wikipedia 

AIDA seedling corpus LTF 

documents 
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These data sets proved challenging due to the 

out-of-domain nature of the target data in 

comparison to the audio training data.  

In Table 2, we report the overall word error 

rate as well as Mean Average Precision (MAP) 

for in-vocabulary (iv), out-of-vocabulary 

(oov), and infrequent (rare) terms for each 

language. We also measured the MAP for 

target words that we considered to be scenario-

relevant in Russian and Ukrainian. 

For English and Russian we found that there 

was a significant degradation when applying 

the acoustic models to the AIDA corpus. On a 

same-domain test set the English model 

produces closer to 11% WER, and the Russian 

model closer to 22% WER. 

5 Optical Character Recognition 

The evaluation corpus included text in many 

of the images and videos. Typically these are 

subtitles overlaid on the image, but this also 

includes ticker-style text on news programs as 

well as some in-scene signs. OCR is applied to 

transform these portions of the images into 

machine-readable text. This is a three-step 

process. First we perform text detection: the 

area where text appears is bounded and 

extracted from the image. Next, an algorithm 

determines whether there are one or multiple 

lines of text, and separates these as necessary. 

Lastly, the characters are matched to possible 

characters in the model of the specified 

language. The machine-readable text that is 

the outcome of OCR is processed by machine 

translation, and then by the text-based 

extraction components. 

6 Machine Translation 

Machine Translation (MT) was used to 

translate Ukrainian and Russian text into 

English. The resources used for training and 

the number of segments translated during the 

evaluation are shown in Table 3 . 

The MT system is also capable of converting 

from one data format to a different format (for 

a limited number of formats) as required by 

the downstream tools. For example, text 

documents were provided to us in an XML 

document using the Logical Text Format 

(LTF) schema, but the next step in our 

processing pipeline uses plaintext, so the MT 

service converts from XML to text. We used 

the MT service to do this format conversion 

for the English-language inputs to streamline 

our intake processes, even though no language 

translation is required. 

Language WER MAP (iv) MAP (oov) MAP (rare) MAP(target) 

English 36.10 0.8460 0.6205 0.8651 - 

Russian 62.34 0.6154 0.3245 0.6418 0.5046 

Ukrainian 65.77 0.5989 0.5194 0.6107 0.4676 

Table 2: Word error rate (WER) and Mean Average Precision (MAP) ASR scores on held-out seedling corpus test sets 

Table 3: Machine translation resources and quantity of data translated 

Language Resources ASR 

utterances 

translated 

OCR 

segments 

translated 

Text segments 

translated 

Ukrainian LDC2017E06 LORELEI IL4 

Incident Language Pack V2.0 

Part 1 

19K 370K 67K 

Russian LDC2016E95 LORELEI 

Russian Representative 

Language Pack Translation 

Annotation 

50K 370K 650K, plus 21 

Russian tweets 
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Text (from ASR or LTF/XML) can be 

translated at a rate of ~35 segments per 

second, per language, on a 24-core machine. 

Translating the 650K Russian segments from 

the LTF input, for example, required about 5.5 

hours of processing time. 

7 Text-Based Extraction 

We use a variety of supervised models to 

extract named entities, relations, and events 

from English-language text. For the pilot 

evaluation, all foreign language source 

material, including ASR and OCR output, is 

processed by machine translation such that we 

may extract knowledge elements using 

English-language information extraction 

models. 

For named entity recognition, we use SERIF, 

which applies a discriminative Viterbi-style 

perceptron model to find and extract names of 

persons, places, and organizations [1]. 

Mentions are grouped into entities using a 

sieve-based approach [2]. 

SERIF also extracts a set of relations with a 

maximum entropy model combined with 

heuristics. We supplement this with a second 

relation finding system that applies syntactic 

patterns expressed using the Brandy pattern 

language over pairs of entities as detected by 

SERIF. The patterns for most of the relation 

classes were determined under previous 

projects. Patterns for remaining scenario-

relevant classes were authored using examples 

in the seedling corpus. Using the LearnIt tool, 

all pairs of entities from sentences inside the 

English documents were identified and used as 

potential examples for patterns. The LearnIt 

tool then allows the user to query for text 

trigger words that identify potential relations. 

Scenario-relevant patterns for the relation 

classes were found using this tool. 

We extract events using SERIF’s logistic 

regression models as well as ACCENT, which 

identifies additional events and their matching 

arguments according to the CAMEO event 

ontology [3]. ACCENT finds events using 

structured patterns applied to augmented text 

graphs (normalized proposition trees that 

incorporate synonymy and coreference).  

A third approach to extracting events, a system 

we call NLPLingo, also leverages SERIF’s 

named entity extractions, but uses a pair of 

convolutional neural networks (CNNs) to 

extract trigger words and associate likely 

arguments with those triggers to form events. 

The first CNN identifies events in the text and 

assigns a type and a confidence to each. The 

second CNN ingests these events and SERIF’s 

entities and identifies the subset of nearby 

entities that fill particular role slots for each 

event. Both networks use the word 

embeddings of a given chunk of the text, as 

well as those of the local context around 

candidate tokens for triggers and slot fillers. 

The models are currently trained on the ACE 

2008 corpus, but going forward we plan to 

take advantage of additional annotation to 

incorporate new classes in the AIDA ontology. 

The classes of events, relations, and entities 

extracted by SERIF, ACCENT, and NLPLingo 

are associated with the AIDA ontology via a 

manually-produced mapping between the ACE 

and CAMEO ontologies and the AIDA 

ontology. 

8 Image-Based Extraction 

8.1 Facial Recognition 

Face ID was used to detect persons of interest 

in images (png, jpg, bmp, gif) and videos 

(mp4). The persons of interest were selected 

based on their frequency of occurrence in the 

seedling corpus. An open source 

implementation of FaceNet was adapted for 

this work [4]. 

Training occurs independently for the 3 stages 

of the FaceID pipeline. The three stages are: 

face detection, face image vector embedding, 
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and face identification. The Multitask 

Cascaded Convolutional Network (MTCNN) 

face detection approach [5] was trained on the 

CelebA [6] and WIDER FACE [7] datasets. 

The learned model parameters for the MTCNN 

were obtained from the open source FaceNet 

implementation website3. Model parameters 

for the Inception Resnet v1 deep convolutional 

neural network architecture were trained on 

the VGGFace2 dataset [8]. 

15 different images for each of the 27 different 

persons of interest were obtained from the web 

by an in-house annotator. Face detection was 

run on these images and face vectors encoded. 

These vectors comprise the gallery. Some of 

the images obtained were published after 2014 

when the person of interest became 

noteworthy. 

The k-nearest neighbors within a Euclidean 

distance threshold are retrieved from the 

gallery using the FLANN library [9]. In Task 

1a, majority voting based on these retrieved 

vectors from the gallery determined the 

identity of the query face vector. Figure 2 

shows some examples of successful facial 

identification from the seedling corpus.  

A confidence score was computed between the 

query face vector and each one of its nearest 

                                                           
3 https://github.com/davidsandberg/facenet 

neighbors. This confidence score is the result 

of applying a radial basis function kernel to the 

query vector and a vector in the gallery. The 

greatest sum of these confidence scores among 

the different gallery identities is used to select 

the identity of the query vector. The average of 

these confidence scores, per the selected 

identity, is used to report the confidence in the 

justification. If the average confidence is 

below a certain threshold, the system did not 

add a justification for that identity. 

The alternative hypothesis, for Task1b, was 

encoded by shortening the distance of Person 

entities in the hypothesis that are also in the 

gallery by a small constant value. This has the 

effect of promoting those entities being 

detected in cases of uncertainty. When 

examining the images in the evaluation corpus, 

154 entities for the person of interest 'Vladimir 

V. Putin' were detected before applying the 

distance shortening. After application, 172 

instances were detected. Inspection showed 

that most of the newly found instances were 

true positives. 

8.2 Concept Detection 

We trained a set of video concept detection 

models from open source data. Video concepts 

Figure 2: Successful facial identification of Sergey 

Lavrov, Viktor Yanukovych, Petro Poroshenko, and 

Catherine Ashton 

 

Figure 3: Successful concept detection of a weapon, 

protest, handgun, and meeting (clockwise from upper 

left). In the lower left photo, the man is exposing a 

handgun at his hip. 
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may refer to contexts, objects, or situations. 

These are mapped to the AIDA ontology 

(manually) as events, relations, or entities. 

Some examples are shown in Figure 3. 

We train multiple concept detectors using deep 

convolutional network models that have been 

fine-tuned to detect scenario-relevant 

concepts. For training, we use multiple 

datasets to form training corpora, such as 

OpenImages4 and training sets curated by 

BBN for use in this AIDA scenario. The set of 

concepts are a subset of the OpenImages 

visual labels. 

The mean average precision for the 111-

concept model is 0.63. Due to large 

differences in label prevalence in training 

corpora, the confidence scores may not be 

accurate when this model is applied to new 

scenario media. Currently, the calibration 

leads to overconfidence of a few labels, so is 

not integrated in our video analytics pipeline, 

but we plan to adjust the calibration technique 

to adapt the scores for each trained model.  

We first train a multi-label convolutional 

network (MLCN) for scenario-relevant 

concepts using a customized fork of the 

CAFFE toolbox5, then combine MLCN 

detection output with the pre-trained object 

detection model outputs using detections for 

only scenario-relevant concepts. We have 

modified the MLCN model to be more robust 

to class label noise, so that mislabeled images 

in the training corpora do not have negative 

impact on model performance. 

In addition to our robust MLCN model, we use 

a pre-trained object detection model of Atomic 

Visual Actions (80 actions) and a second pre-

trained object detection model trained on a 

subset of OpenImages classes utilizing the 

Tensorflow toolbox. We map the concept 

detections to entities and other ontology 

elements, with bounding box and associated 

key-frame information. Our system currently 

                                                           
4 https://storage.googleapis.com/openimages/web/index.html 

maps detections from these model outputs to 

the AIDA ontology using predefined 

mappings. In the evaluation we processed 

29,502 images and 1,029 videos with this 

system. 

9 Cross-modality merging 

The extractions provided by each of the text-

based and image-based analytics described 

above are converted to the required RDF 

format to include name strings and appropriate 

justifications. At present we provide the union 

of all extractions for a given document 

(including all child documents of varying 

modalities) for use by TA2. Future iterations 

of the inter-analytic merging component of the 

pipeline will conduct coreference across the 

different document elements of a given 

document and combine extractions before 

delivery to TA2. 

10 Query Application 

10.1 Class Queries 

A SPARQL query is constructed using the 

information in the query supplied by NIST. 

The query is applied to our knowledge graph 

for the document specified by NIST’s query 

and collects the justification information 

associated with the class instances. 

10.2 Zero-hop Queries 

Zero-hop queries are applied as a pair of 

SPARQL queries. The first SPARQL query 

identifies all candidate nodes in the knowledge 

graph that satisfy the justification and type 

constraints of each entry point in the query. 

The single best match is identified among 

these nodes, and the second SPARQL query 

accumulates all of its justifications. 

5 http://caffe.berkeleyvision.org/ 
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10.3 Graph queries 

Graph queries require additional processing to 

identify all the knowledge graph components 

that are requested and that are connected to the 

entry points. The algorithm iteratively probes 

the knowledge graph for edges in the query 

that are connected to the response subgraph in 

its current state, then collects justification 

information on its components separately. 

We use the following approach to apply the 

given queries to the resulting knowledge graph 

in both the original extraction task, and the 

secondary task of extractions augmented by 

feedback hypotheses. 

1) For a given query, identify all entry points. 

Find/resolve the 1-best match for all of the 

entry points to elements in our KB. 

2) Look at each edge in the query that has an 

entry point as one of its endpoints. 

a) If the entry point was not resolved in 

step 1), discard the edge. 

b) Otherwise, resolve all matches for the 

edge's non-entry-point endpoint and for 

the edge itself, and associate these 

elements with the appropriate variable 

in the query. 

3) For each of the remaining edges in the 

query which relate to only non-entry 

points: 

a) If the edge has previously-encountered 

variables as endpoints, continue. 

b) If the edge has at least one endpoint 

identified by a variable that was 

resolved above, find all matching 

elements for the other endpoint and the 

edge, associating them with the 

appropriate variables. Each time a 

query new edge is found in this way, 

add it as an optional clause to the 

SPARQL query composed to probe for 

subsequent edges. This binds the 

variable for result rows where it is 

newly-encountered, but leaves it blank 

if another row has bound it to a 

different, inapplicable node. The 

resulting query has the following 

components in its WHERE clause: 

i) Binding of the entry point(s) to one 

node 

ii) Optional clauses that contain an 

entry point and whose other 

components have been successfully 

matched above 

iii) Optional clauses that contain no 

entry point and whose other 

components have been successfully 

matched above 

iv) A clause to probe whether the 

current edge can be matched to any 

variables 

c) Repeat until no more query edges 

appear in step 3b.  

4) Now that every variable in the query is 

either resolved to one or more KB nodes or 

not resolvable, collect the following 

information: 

a) Make a list of all valid mappings from 

pairs of query edge IDs and variable 

names to the nodes themselves (or null, 

where appropriate). 

b) Get justifications for each knowledge 

element: get the 1-best 

(subjects/objects) or 2-best (edges) 

justifications associated with the node 

on the basis of confidence. 

5) Build the XML output by composing the 

mappings with their justifications. 
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11 Conclusion 

For the SM-KBP track of TAC 2018, BBN 

produced a set of knowledge graphs consisting 

of elements drawn from text, video, and audio 

sources using a variety of analytic components 

trained on open-source and curated scenario-

relevant resources. Further work includes the 

implementation of a more sophisticated cross-

modal merging algorithm that will combine 

entities, relations, and events believed to refer 

to the same real-world entity, using 

information and confidence from each 

modality and pipeline component to support 

the complimentary extractions. 
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