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Abstract

We constructed a pipeline-based system for
participation in the 2018 pilot NIST SM-
KBP evaluation. Our pipeline was assem-
bled from a series of components repre-
senting contemporary approaches to each
of the distinct Information Extraction and
Machine Translation tasks required. Our
goals for this system were: (1) to demon-
strate an extant SM-KBP capability (can
we run on the data and produce a valid
output); and (2) to stand as a non-trivial
baseline for contrasting against our future
efforts for this task.

1 Introduction

The SM-KBP task involved processing a set of
independent documents in English, Russian, and
Ukrainian. For each document we were required
to identify named entities, coreferring expressions,
and events and relations the entities appeared in.
Under the guidelines for the task, evidence for
events and relations may occur in different sen-
tences of a document than the supporting men-
tion(s) for an entity that is deemed to be a re-
lational argument or event participant. The task
was evaluated via queries consisting of offsets into
a given document, representing oracle span anno-
tations for some initial element salient to the query.
Based on a query, various knowledge structures
were to be returned, represented in the AIDA In-
terchange Format (AIF). Task 1a consisted of a
corpus and queries; Task 1b consisted of a cor-
pus, queries, and associated hypothesis objects
that could viewed as partial knowledge base frag-
ments, upon which the extraction system should
condition during document processing.

The 2018 instance of SM-KBP was considered
a pilot, with participation by TA1 performers of
DARPA’s AIDA program. Our team constructed a
system meant to establish a baseline performance,
with our primary goal being to ensure we gained
an understanding of the task, and had a non-trivial
baseline in future work.

Our system involved training ERE extraction
components on annotated documents provided un-
der the DARPA AIDA and DEFT programs.
Coreference was handled by a pre-trained, 3rd
party system. No attempt was made to perform
extraction directly on non-English documents:
these were translated into English, processed with
English-based components, then aligned heuristi-
cally back to Ukrainian and Russian spans in order
to handle source-document queries.

The hypothesis information under Task 1b was
handled by extracting named entity strings from
the hypothesis, then performing a limited sort of
entity linking against those entity strings and the
coreference chains extracted under Task 1a. For
any potential match, we then aimed to increase
the recall of the relations and events we output for
those entities. In short: if something downstream
had a hypothesis about a particular entity, and we
thought a given document could be about that en-
tity, then we increased the amount of information
we output, specific to that entity.

The following gives details on the modules in-
volved in this system.

2 Machine Translation

We restricted our extraction models to English,
with a reliance on Machine Translation (MT) into
English to support non-English documents. We
assembled various bitexts for training and inter-
acted with NIST to establish whether each was
constrained or unconstrained.

2.1 Model

Translation was performed using the Python im-
plementation of OpenNMT (Klein et al., 2017).
A 4-layer bi-directional LSTM encoder-decoder
model with attention was employed. The dimen-
sions of the embedding layers and LSTM hidden
units were 300 and 1024 respectively.

The following describes the resources used for
each language.



2.2 Russian - English

Two corpora were used to build Russian - En-
glish MT systems. The first consists of the train-
ing and development set from the WMT’17 news
translation challenge.1 It is an aggregate of the
Common Crawl corpus, News Commentary v12,
Yandex Corpus, Wiki Headlines, and UN Parallel
Corpus V1.0, and totals 25M sentences. The UN
parallel Corpus mentions Crimea in several places,
and so may only be used in the unconstrained set-
ting. The second corpus is the OpenSubtitles 2018
Russian-English corpus 2. This is parallel text con-
taining 26M sentences extracted from movie sub-
titles (Lison and Tiedemann, 2016). It does not
mention the Crimea conflict and may thus be used
in the constrained setting.

2.3 Ukrainian - English

To build Ukrainian - English translation systems,
we used the OpenSubtitles 2018 corpus 3, which
contains 878k sentences. It was built in the same
way as the Russian-English Open Subtitles corpus
and can also be used in the constrained setting.

2.4 Language Identification

LDC provided initial, automatic Language Identi-
fication (LID) determinations, which on inspection
we determined to be error-prone. We therefore
performed an internal, sentence by sentence LID
analysis via the python port of Google’s language-
detection library4. For each document, the LID
system only detected Russian and Ukrainian sen-
tences. A sentence will be categorized as English if
it was not classified as Russian or Ukrainian by the
LID system. We then translated sentences classi-
fied as Russian and Ukrainian with machine trans-
lation describe in previous sections.

3 Information Extraction

There are two phases in extracting information
from text: (1) independently detect entities, re-
lations, and events; then (2) link detected entities
as potential arguments to predicted relations and
events.

3.1 Entity Mention and Type Detection

To detect entity mentions, we implemented a neu-
ral biLSTM-CRF BIO tagger (Lample et al., 2016),
with tokens embedded using 300-dimensional
GloVe word embeddings. We trained on ERE data

1http://data.statmt.org/wmt17/
translation-task/preprocessed/ru-en

2http://opus.nlpl.eu/download.php?f=
OpenSubtitles2018/en-ru.txt.zip

3http://opus.nlpl.eu/download.php?f=
OpenSubtitles2018/en-uk.txt.zip

4https://github.com/Mimino666/langdetect

made available under the DEFT program as it con-
tains annotations for not just entities but also en-
tity type, relations, and events. It also is exhaus-
tively annotated (no false negatives), unlike initial
data provided under AIDA. In the cases of over-
lapping spans, we discard all but the longest span.
At test time, the tagger is run at the sentence level
independently for each sentence, effectively placing
each token into at most one span.

Our BIO tags were augmented with entity type
labels (according to the DEFT ontology), including
filler types. This greatly increased the label space
but also allows the model to jointly make decisions
regarding entity detection and type prediction.

We experimented with several hyperparameters,
such as the number of layers, dropout, and tag
types (IO, BIO, BIOE), selecting our final config-
uration based on a development set from DEFT
data. A single-layer BIOE tagger with 0.9 dropout,
and l2 regularization of 0.001 over all the parame-
ters was found to be the most effective, achieving
an accuracy of 83.6%, precision of 65.3%, recall of
54.6% and F1 score of 59.5%. While these results
are low for state-of-the-art NER, we kept with this
solution for the pilot in order to stick with data
most similar to the AIDA domains, and with a
label set that could be directly mapped (as the
filler types are comparable). In addition, man-
ual inspection of the predictions concluded that
while the type may be predicted incorrectly, the
mention spans were quite accurate. Furthermore,
early errors made during entity typing can be cor-
rected later based on document-level information
(and coreference resolution). For these reasons, we
decided to use this in-domain BIOE tagger for en-
tity mention and type prediction.

3.2 Relation and Event Detection

Our information extraction systems run on English
text, some of which may be noisily translated, but
graph queries specify spans in source documents.
Because we don’t have alignments in our training
data, we detect the presence of relations and events
(REs) at the sentence level instead of at the token
level. The span for a found RE is then just the
entire sentence. Analysis of the AIDA data showed
that most sentences have at most 1 RE mention,
so at query time we can find the RE in question
simply by finding which sentence a query refers to.

Sentences may contain many REs (rarely of the
same type), so we detect each type with its own bi-
nary classifier indicating whether an RE of a given
type is present in the sentence. Most RE types
do not have many labeled examples in the English
portion of the AIDA training corpus. We did not
incorporate DEFT ERE data as training data for
RE detection because the style (forum posts) is
too different from that of the AIDA data (profes-
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sional newswire), even though the ontologies are
very similar. Our system does not make predic-
tions for types that have no labeled instances.

We address the data sparsity problem in three
ways: 1) we use pre-trained GloVe word embed-
dings (Pennington et al., 2014)5, giving randomly
initialized word embeddings to words appearing
in the training data without pre-trained embed-
dings; 2) we use a simple encoder consisting of
mean-pooling concatenated with max-pooling over
the sentence’s word embeddings, which is then fed
through a fully connected layer and a ReLU acti-
vation; and 3) we equip each binary RE classifier
with a tunable hyperparameter that adjusts the
precision and recall of detecting its corresponding
RE type. We have found adaptive thresholding to
improve performance in related tasks (Zhang et al.,
2018), and in practice we adjust the thresholds to
avoid the proliferation or lack of predicted types.

These three techniques focus on building tunable
models with small amounts of parameters, owing
to the lack of data to support larger models. For
example, we do not update pre-trained word em-
beddings during training, which substantially re-
duces the number of trainable parameters in our
models. The encoder we use has been found to be
useful in unpublished work in sentence-level topic
identification, which is similar to our sentence-level
RE detection task. Preliminary experiments with
multilabel RE classification resulted in most sen-
tences receiving similar predictions and did not
give fine control over model predictions (due to
the loss function we used). Our decision to switch
to constructing a separate classifier and a tunable
precision-recall hyperparameter for each RE type
allowed us to qualitatively check that appropriate
predictions are made for each type. The hyperpa-
rameters can be adjusted at inference time without
needing to retrain the model.

3.3 Argument Linking

Once we have predicted an event or relation is trig-
gered in a given sentence, and we have separately
detected mentions (with types), then we optionally
link each mention to a relation or event as an argu-
ment, as a second round of sequence tagging. We
use the same framework was used for entity men-
tion and type detection; a biLSTM-CRF tagger.
We trained a single model for Events and one for
Relations, using an IO tagset (owing to label spar-
sity in training we forwent a ’B’ tag, trusting that
very few distinct arguments would be contiguous
spans).

To inform the argument linking model about
mention and type predictions made earlier in the
pipeline, we incorporated those token-level predic-
tions as one-hot features concatenated to the token

5nlp.stanford.edu/data/glove.6B.zip

embedding. We observed F1 scores for relational
arguments of 34.8 (91.1% accuracy) and event ar-
guments of 46.8 (93.7% accuracy). We prioritized
recall over F1 score when choosing between simi-
larly competitive models, since downstream preci-
sion can be improved post-linking (when produc-
ing a response). Using forced decoding of tags (by
manually lowering the weight of the ‘O’ tag), we
could artificially boost recall, but the tradeoff in
precision under this method was observed in de-
velopment to be too costly.

Given a hypothesis to condition on (Task 1b) we
can use forced decoding selectively. By identifying
which strings in the documents are similar to those
in the hypotheses (described more in Section 4), we
can force the tagger to decode non-O tags for those
entities, thereby linking the hypothesized entities
to an event or relation. Since this approach links
entities that are hypothesized to be salient to the
document, recall is improved. Since it does not link
arbitrarily (which is the result of applying forced
decoding uniformly), it does not result in a large
drop in precision.

4 Name Similarity

For determining a match between a document men-
tion and an entity string from a hypothesis, we em-
ployed a model for learning string similarity (Necu-
loiu et al., 2016). Given two strings, the model is
capable of outputting a score (cosine similarity)
that indicates how similar these two input strings
are. The model is a Siamese network where two
identical, parameter-shared modules are stacked
upon the two input strings, with each string con-
sidered as a character sequence. Each module com-
prises of 4 bidirectional LSTM layers (size 64) fol-
lowed by a feedforward layer that results in a vec-
tor of size 128. A cosine similarity function lays on
top to connect these two Siamese branches. The
model was trained using a dataset based on Wiki-
Names, arising from earlier research at JHU (An-
drews et al., 2012).

5 Knowledge Base Construction

Given sentence-level predictions of entities, rela-
tions, and events, we can construct a knowledge
base for each document. This fundamentally re-
lies on identifying coreferent entities, events, and
relations in text. In this system, we only identify
coreferent entities.

We used a state-of-the-art coreference resolution
system (Lee et al., 2017) and ran it directly on the
English text. We use a fuzzy overlap heuristic to
resolve tokenization disputes between the corefer-
ence resolution system and the tokenization pro-
vided by LDC or the output translations.

The coreference resolution system produces clus-
ters of spans, each of which we can identify with

nlp.stanford.edu/data/glove.6B.zip


an entity. Due to memory constraints, large docu-
ments were broken into chunks of 5,000 tokens each
and independently processed. In practice, this af-
fected fewer than 5% of the documents. Further-
more, we could label each entity with a type deter-
mined by the majority predicted type among the
mentions in its cluster. The confidence of the type
is determined by the proportion of members of the
cluster with that type.

As a result, typed document-level entities, not
text spans, are the arguments of relations and
events after this step.

6 Alignment

The use of state-of-the-art English entity, event,
and relation extraction systems on translations of
Russian and Ukrainian documents introduced two
alignment problems. Firstly, discovered spans on
the target side (English) needed to be aligned back
to their source spans in order to reason about Rus-
sian and Ukrainian events and coreference chains.
Secondly, queries given as character offsets in the
source (Russian or Ukrainian) document needed
to be aligned to a span discovered in the English
translation in order to resolve the coreferences and
relations. To address both problems, the docu-
ment sentences and their respective translations
were concatenated to the same bitext used to train
the machine translation system and fast-align

(Dyer et al., 2013) was run over the resulting aug-
mented bitext, allowing alignments to be recov-
ered.

Confirming the findings of Koehn and Knowles
(2017) and Ghader and Monz (2017), we found
that hard alignments obtained via neural attention
were often incorrect, leading us to instead employ
HMM-based alignment algorithms from the statis-
tical machine translation literature. The choice
to concatenate the documents to the training cor-
pus rather than train on the bitext and decode
the documents separately was motivated by con-
cerns of domain mismatch between the bitext and
the provided documents. Taking the union of the
alignments in each direction (e.g. source to tar-
get, target to source) yielded pointers from English
word tokens to source word tokens. Following these
pointers from English to the source language and
taking the maximum contiguous sub-span of the
resulting sequence of source word indexes allowed
English spans to be matched to their correspond-
ing source tokens. Aligning query character off-
sets to spans in the translation presented a slightly
more challenging problem since the span of trans-
lated word tokens to which the query tokens were
aligned to needed to be a member of the set of
spans discovered by the mention detection system
– if this were not the case, coreference and event
resolution would be impossible. To enforce this

constraint, the corresponding span was chosen by
computing the character index overlap between the
span obtained by following the alignment pointers
from the source and each of the spans discovered
by the mention detection system (using F1 score
as a metric), at which point the discovered span
with the highest overlap score was chosen.

7 Query Handling

Output Knowledge Bases (KBs) under the evalu-
ation were to be represented in the AIDA Inter-
change Format (AIF). We supported this via the
USC ISI converter6 which maps from TAC-KBP
ColdStart format to AIF. We chose to use Cold-
Start as an intermediate representation because of
its human-readability and general simplicity, which
facilitated a faster development process.7

In order to evaluate the KBs during the pi-
lot, NIST released three types of queries: 1)
Class Queries, 2) Graph Queries, and 3) Zero-
hop Queries in two formats: a) Simple XML,
and b) SPARQL format, which participants had
to execute themselves. Later in the evaluation
NIST released a Docker container for applying
the SPARQL queries directly on the AIF graphs.
In the time available we were unable to make
use of this service,8 and also owing to comments
from other performers on the slow speed of Jena
when executing the SPARQL queries, we manu-
ally parsed and executed the Simple XML version
of the queries. This ad-hoc Python script used the
original TAC-KBP files as input, rather than the
derived AIF format.

Class Queries: For each class query, for each
KB, we iterated over all mentions of the entities of
that type and serialized them to an xml file.

Graph Queries: A graph query is a tuple of
(graph, entrypoints). A graph is a collection of
edges, where each edge is a triple (subject, pred-
icate, object). An entrypoint describes a node,
and a typed descriptor, and we only processed
two types of typed descriptors (string descriptor,
and text descriptor). The string and text descrip-
tor are analogous to string based search vs men-
tion based search respectively. For the pilot eval-
uation, we had only one entry point entity per

6https://github.com/NextCenturyCorporation/
AIDA-Interchange-Format

7While there is active development of utility li-
braries for AIF, these are Java-based, while our soft-
ware stack was rooted in Python. The ColdStart-AIF
converter was the path of least resistance for this initial
pilot task.

8Out of the box attempts were unsuccessful, and on
inspection the Perl-based software appeared to rely on
an undocumented file hierarchy and naming structure
for the AIF files; we left further exploration of this
service for after the pilot.

https://github.com/NextCenturyCorporation/AIDA-Interchange-Format
https://github.com/NextCenturyCorporation/AIDA-Interchange-Format


graph query, though each entry point entity may
have more than one descriptor. For each query,
for each KB, we first searched for the entry-point
entity by using either the string or the text de-
scriptor of the entry point if that was applicable
for the current KB. Then all edges where the re-
solved entry-point was either a subject or an ob-
ject and for which we also had a predicate in the
KB that matched the predicate in the query for
that particular edge were marked as resolved edges
and the edge with the highest confidence amongst
those was chosen. This was we greedily built the
returned graph starting from the entry-point as a
resolved node, and then adding more nodes to the
set of resolved nodes. Once the process could not
be continued we stopped.

Zero-hop Queries: Zero-hop queries provide a
mention of a filler or entity from a document (given
as a character offset) and expect all references of
that entity from the document as a result. In the
simpler case of English documents, a query char-
acter offset is compared to the character offsets of
all entities detected in the document, and the en-
tity with the highest character overlap (as mea-
sured by F1 score between query and entity off-
sets) is chosen. All entities in the same corefer-
ence chain as the chosen entity are returned. Rus-
sian and Ukrainian documents present a slightly
harder problem, as entity detection and corefer-
ence resolution for Russian and Ukrainian source
documents was performed in their English transla-
tions, meaning that query offsets and their coref-
erent spans needed to be aligned from source to
English and English to source, respectively. The
alignment methods described in §6 yield pointers
from Russian or Ukrainian words to their corre-
sponding English translations. Using these align-
ment pointers, zero-hop responses for queries in
Russian and Ukrainian were generated by com-
puting the F1 overlap between the characters of
the English words aligned to the source offset and
each detected entity and subsequently following
the pointers of all mention spans coreferent to the
entity with maximum F1 back to the source.
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