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Abstract
Identifying Drug-Drug Interaction (DDI) is
a critical issue in clinical medicine. There
is an overwhelming amount of information
available in the form of narrative text in
Structured Product Labeling (SPL) docu-
ments. Transforming the narrative text to
structured information encoded in national
standard terminologies is a prerequisite to
the effective deployment of drug safety in-
formation. However, manual curation is a
necessary but expensive step in the devel-
opment of electronic drug-drug interaction
data. To address this challenge, TAC 2018
Drug-Drug Interaction Extraction track de-
fined several Natural language processing
(NLP) tasks ultimately leading to identifica-
tion of distinct interactions in a SPL docu-
ment and linking them to structured knowl-
edge sources. We participated in all NLP
tasks namely, Concept Extraction of Pre-
cipitants, Specific-Interactions and Triggers
(Task 1), Relation Identification between in-
teractions (Task 2), normalization of differ-
ent concepts (Task 3) and finally generat-
ing a global list of distinct interactions for
each SPL (Task 4). We used a combina-
tion of BiLSTM-CRF followed by syntactic
tree pattern matching for Task 1, Attention-
LSTM for Task 2 and learning to rank algo-
rithms for Task 3 & 4. Our system achieved
F-measures of 29.87 and 35.38 for Task 1,
19.66 and 19.43 for Task 2, 24.73 and 28.37
for Task 3, 12.42 and 10.49 for Task 4 on
Test 1 and Test 2 datasets respectively. We
were the only team that participated in all
the four tasks and we ranked among top-3
systems in Task 1 and Task 2.

Index Terms: Deep Learning, Adverse
Drug Reaction, Drug Labels, Named Entity

Recognition, Relation Extraction, BiLSTM-
CRF, Attention-BiLSTM

1 Introduction
Structured product labels (SPLs) are a Health level
Seven (HL7) standard which refer to prescrip-
tion drug documents containing discrete, coded,
computer-readable data, made available to the public
in individual SPL index documents. They’re strictly
regulated by the United States Food and Drug Ad-
ministration and provide critical information which
health-care investors use to evaluate company’s prod-
ucts. In SPLs, DDI details are given in narrative
text, tables, and figures within the Drug Interac-
tions section or other locations throughout the la-
bel. In a continued effort to transform the narrative
text to structured information encoded in national
standard terminologies, followed by TAC-2017, FDA
and NLM organized TAC-2018 Drug-Drug Interac-
tion challenge which includes the 4 tasks listed be-
low:

• Task 1: Extract Mentions of Precipitant (Inter-
acting drugs or substances), Trigger (a trigger
phrase for an interaction event) and Specific In-
teraction (results of an interaction event) at a
sentence level.

• Task 2: Identify interactions at a sentence level,
including the Precipitant, the Specific Interac-
tion types, namely Pharmacokinetic, Pharma-
codynamic or Unspecified, and the outcomes of
Pharmacokinetic and Pharmacodynamic inter-
actions.

• Task 3: The interacting substance should be nor-
malized to a UNII code, and the drug classes
to NDF-RT NUI. Normalize the outcome of the
interaction to a SNOMED CT code if it is a
medical condition. Normalize pharmacokinetic
effects to National Cancer Institute (NCI) The-
saurus codes.



• Task 4: Generate a global list of distinct interac-
tions for the label in normalized form. Specifi-
cally, the interaction type, precipitant code and
outcome.

Three important research areas in the field of
information extraction are Named Entity Recogni-
tion (NER), Relation Extraction and Entity Link-
ing. Extracting and succinctly linking clinical or bio-
medical entities automatically from the corpora has
the potential to improve clinical decision support sys-
tems. With the recent advancements in deep learning
research, several neural network architectures have
been successfully applied to NER and Relation Ex-
traction. In this research, we used a combination
of BiLSTM-CRF followed by syntactic tree pattern
matching for NER (Task 1), Attention-LSTM for Re-
lation Extraction (Task 2) and learning to rank algo-
rithms with manually engineered features for entity
linking (Task 3 and Task 4).

The rest of the paper is organized as follows: in
Section 2, we describe the dataset. In Section 3, we
present our system architecture and methods for the
concept and relation extraction tasks. In Section 4,
we describe experimental settings of the system and
achieved results for different settings and parameters.
In Section 5, we conclude with our insights and de-
tails about the future direction.

2 Datasets and Preprocessing
In a collaborative effort, NLM and FDA manu-
ally annotated 22 drug label documents (XML-22)
with mentions (Precipitants, Trigger, Specific Inter-
actions), relations (Pharmacokinetic, Pharmacody-
namic, Unspecified) and Interaction mappings us-
ing semi-automated approaches. Additionally, 180
drug-label documents were fully manually annotated
by NLM (NLM-180) in a comparable format. We
provide detailed description of the datasets in Table
1. In an effort to completely leverage the NLM-180
dataset, given it’s significantly larger size, we tried to
map the NLM-180 dataset to XML-22 dataset. Al-
though mapping the datasets at a label level looks
trivial, the underlying guidelines vary significantly.
Thus, in order to achieve uniformity between the
datasets and consequently develop our systems on
these datasets, we further performed several pre-
processing steps as shown below:

• It is worth noting that NLM-180 guidelines ex-
plicitly specify the annotation of only certain
BiomedicalEntity (Drug, Drug Class or Sub-
stance) that follow specific rules. To achieve

uniformity, we first automatically expanded the
BiomedicalEntity annotations to cover all the
drugs, drug classes or substances present in
the NLM-180 dataset using classic Bidirectional
Maximum Matching (BDMM) algorithm.

• Next, it is worth noting, Triggers that co-occur
with Specific interactions are a separate anno-
tation in XML-22. However such a separa-
tion does not occur in the NLM-180 dataset.
Thus, to further achieve uniformity between
the datasets, we converted all the discontiguous
spans to contiguous spans thus leaving the bi-
furcation of Triggers from Specific Interactions
as a post-processing step.

• Next, we identified a list of triggers, that were
annotated as a Trigger in the XML-22 dataset,
but not in the Specific Interaction spans in the
NLM-180 dataset. We used BDMM algorithm
to further expand these spans.

In Figure 1 we provide an illustration of the above
method. Post transformation we were able to map
NLM-180 to XML-22 as shown in Table 2.

3 Deep Learning Architectures

3.1 Concept Extraction Architecture

With the recent advancements in deep learning re-
search, several neural network architectures have
been successfully applied to concept and relation ex-
traction. Among these, architectures based on bi-
directional LSTMs have proven to be very effective
(Huang et al., 2015; Ma and Hovy, 2016; Zhou et al.,
2016; Zhang and Wang, 2015). In this section, we
describe our concept and relation extraction systems
in detail. The architectures of our concept and rela-
tion extraction systems are illustrated in Figure 2 and
Figure 3 respectively.

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) is a type of recurrent neural net-
work (RNN) that models interdependencies in se-
quential data and addresses the vanishing or explod-
ing gradients (Bengio et al., 1994) problem of vanilla
RNNs by using adaptive gating mechanism.

Given an input sequence x=(x1, x2...xT ) where
T is the sequence length, LSTM hidden state at



XML-22 Mentions

Precipitant 2945
Interacting substance with a label drug i.e. drug, drug class or

non-drug substance.
Trigger 793 Trigger word or phrase for an interaction event.
Specific Interaction 605 Result of interaction.

XML-22 Relations

Pharmacokinetic 706
Indicated by triggers, involves effect on absorption, distribution,

metabolism and excretion of interacting drug.

Pharmacodynamic 1487
Indicated by triggers and specific Interactions, is the effect of the drug

combination on the organism.

Unspecified 687
Indicated by triggers, are general warning of risk against combining

label drug with precipitant.
NLM-180 Mentions

Drug 4623
A drug is a chemical substance administered for medicinal purposes.

Drug names can be generic (chemical name of the substance) or brand
names .

Drug Class 2800
Drug classes are assigned based on different characteristics: chemical

ingredients, administration method, mechanism of action, and the
target organ or target anatomical system.

Substance 191
Substances refer to any material entities that are not drug or drug

classes. These include foods, nutritional supplements and other things
that can be found in the environment.

Specific Interaction 1870
Specific interactions indicate specific effects resulting from the

interaction.

Increase Interaction 810
Increase interactions indicate higher levels or increased effects of the

object drug in the system as a result of the precipitant drug.

Decrease Interaction 224
Decrease interactions indicate lower levels or decreased effects of the

object drug in the system as a result of the precipitant drug.

Caution Interaction 1107
Caution interactions are general precautions about the use of two

entities together without specific mention of an effect.

Table 1: Data Description.

NLM-180 XML-22
Drug, DrugClass,

Substance,
Biomedical Entity

Precipitant

DecreaseInteraction,
IncreaseInteraction

Trigger
(Pharmacokinetic

Interaction)

SpecificInteraction

Trigger +
SpecificInteraction
(Pharmacodynamic

Interaction)

CautionInteraction Trigger (Unspecified
Interaction)

Table 2: mapping between NLM-180 and XML-22
DATASETS.

timestep t is computed by:

it = σ(Wi ∗ xt +Ui ∗ ht−1 + bi)

ft = σ(Wf ∗ xt +Uf ∗ ht−1 + bf )

ot = σ(Wo ∗ xt +Uo ∗ ht−1 + bo)

gt = tanh(Wg ∗ xt +Ug ∗ ht−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(1)

where σ(.) and tanh(.) are the element-wise sigmoid
and hyperbolic tangent functions, � is the element-
wise multiplication operator, and it, ft, ot are the
input, forget and output gates. ht−1, ct−1 are the
hidden state and memory cell of previous timestep
respectively.

Unidirectional LSTMs suffer from the weakness
of not utilizing the future contextual information. Bi-
directional LSTM (Graves and Schmidhuber, 2005;



Figure 1: Example demonstrating preprocessing on NLM-180. Original annotations are shown in Green.
Modified annotations are displayed in Red bounded box.

Figure 2: Concept Extraction.



Graves, 2013) addresses this by using two indepen-
dent LSTMs (forward and backward) in which one
processes the input sequence in the forward direction,
while the other processes the input in the reverse di-
rection. The forward LSTM computes the forward
hidden states (

−→
h1 ,
−→
h2 , ....

−→
ht) while the backward

LSTM computes backward hidden states (
←−
h1 ,

←−
h2 ,

....
←−
hn) . Then for each timestep t , the hidden state

of the Bi-LSTM is generated by concatenating
−→
ht and

←−
ht

←→
ht = (

−→
ht ,
←−
ht) (2)

Although Bi-directional LSTM networks have the
ability to capture long distance inter-dependencies,
previous research suggests additionally capturing the
correlations between adjacent labels can help in se-
quence labeling problems (Lample et al., 2016; Col-
lobert et al., 2011; Huang et al., 2015). Conditional
random fields (CRF) (Sutton et al., 2012) helps in
capturing these correlations between adjacent tags.
Given an observation sequence

←→
ht (outputs from Bi-

directional LSTM), CRF jointly models the probabil-
ity of the entire sequence of labels Y=(y1, y2...yT )
by using the discriminative probability to yi given
xi and the transition probability between adjacent la-
bels.

Using preprocessed NLM-180, dataset we trained
a BiLSTM-CRF model to recognize all Biomedical
Entities. We used sentence tokens, part-of-speech
tags and dependency features as inputs to the model.
Next, we trained another BiLSTM-CRF model us-
ing the same dataset to recognize all the Interac-
tion (Pharmacokinetic, Pharmacodynamic and Un-
specified Interaction) spans. We used sentence to-
kens, part-of-speech tags, dependency features and
type features (BiomedicalEntity types) as inputs to
the model.

3.2 Relation Extraction Architecture

Attention mechanism is a technique often used in
neural translation of text introduced in (Bahdanau
et al., 2014). The attention mechanism allows the
networks to selectively focus on specific information.
This has benefited several natural language process-
ing (NLP) tasks such as factoid question answering
(Hermann et al., 2015), machine translation (Bah-
danau et al., 2014) and relation classification(Zhou
et al., 2016). In this paper, we use attention mech-
anism for relation classification task (see Figure 3)
similar to (Zhou et al., 2016).

Formally, let H be a matrix consisting of output
vectors [

←→
h1 ,
←→
h2 ....

←→
ht ] (outputs from Bi-directional

LSTM network), the representation r of the input is
formed by a weighted sum of these output vectors:

M = tanh(H)

α = softmax(wT ∗M)

r = H ∗ αT

(3)

where HεRdwXT , dw is the dimention of vectors,
wT is the transpose of trained parameter vector. We
obtain the final representation from:

h∗ = tanh(r) (4)

4 Our System

4.1 Concept and Relation Extraction

We present our overall system architecture in Figure
4. As shown in Table 1, the number of annotations
in XML-22 is much less compared to NLM-180, so,
we used XML-22 only as development data and used
NLM-180 to train our models. We split the prepro-
cessed NLM-180 into 90% labels for our training
set and the remaining 10% to tune model parame-
ters. As a preprocessing step, we used Spacy (Honni-
bal and Montani) for tokenization, sentence segmen-
tation, part-of-speech tagging and dependency pars-
ing. We first trained two different concept extraction
models (architecutre introduced in section ) to recog-
nize all Bio-medical Entities and Interaction spans.
We used words, part-of-speech tags, dependency fea-
tures, character representations as inputs to these
model. We trained two separate models to avoid
nested entities as Biomedical entities and Interac-
tion spans sometimes overlap with each other in the
dataset. Next, we trained relation extraction model
(architecture introduced in section ) that helps in de-
termining the relation type (hasObject, hasPrecipi-
tant, NO RELATION) between recognized Biomedi-
cal Entities and Interactions. To train these models,
We used words, part-of-speech tags,dependency fea-
tures, type features and positional indicators as inputs
to train this model. The word embeddings are pre-
trained using word2vec (Mikolov et al., 2013) on en-
tirety of unannotated Structured Product Label (SPL)
data. We fixed word embedding length to 200, char-
acter embedding length to 10, part-of-speech embed-
ding length to 20 and dependency-parse to 20. Char-
acter, part-of-speech and dependency-parse embed-
dings are initialized randomly.



Figure 3: Architecture of Relation Extraction.

Using these trained models, we identified Biomed-
ical Entities, Interactions and Relations in XML-
22 datasets. Next, using XML-22 as development
dataset, we developed a multi-step approach to map
the identified concepts and relations to XML-22 an-
notations as shown below:

• we discarded: 1) all Biomedical entities that do
not participate in a relation and 2) all biomedical
entities that participate in hasObject relation if
and only if the given biomedical entity belongs
to same drug/brand named/drug class of the cor-
responding SPL.

• Next, we mapped the predicted concept types
to the ones in XML-22 using the mapping de-
scribed in Table 2 as illustrated in Figure 5

• Next, we developed a hybrid linguistic approach
that combines shallow parsing, syntactic simpli-
fication with pattern matching to extract triggers
from the recognized interactions and to further
restore discontinuous spans as illustrated in Fig-
ure 6.

• Finally We performed clean up on each exr-
tracted concept at a token level, such as removal
of certain POS tags, such as leading DET, PREP
tags, as well as removal of any token predicted
as a Biomedical Entity from Triggers and Spe-
cific Interaction entities. Others also involved
removal of certain types of hedging words such

as serious, life-threatening based on the DDI
Guidelines.

parameter BioMed Interaction RE
dropout 0.4 0.4 0.5
learning rate 0.02 0.03 0.03
reg. 1e−7 1e−6 1e−6

hidden layer 150 100 100

Table 3: Hyperparameters for our system.

Hyperparameters There are four hyper-
parameters in our models, namely the dropout
rate, learning rate, regularization parameter, and
hidden layer size. The hyperparameters for our
models were tuned on the development set for each
task. Previous research suggests using dropout
mitigates over-fitting and especially beneficial
to the NER task(Ma and Hovy, 2016). We ex-
perimented by tuning the hyperparameters with
different settings: dropout rates (0.0, 0.1, 0.2, 0.3
and 0.4,0.5), hidden layer sizes (100,150,200) and
regularization parameter (1e−5, 1e−6, 1e−7,1e−8.).
We chose Adam (Kingma and Ba, 2014) as our
stochastic optimizer and tuned the learning rate at
(0.01,0.02,0.03).We used early stopping(Graves,
2013) based on performance on development dataset.
The best performance appear at around 20 epochs
and 15 epochs for concept extraction and relation
extraction respectively.



Figure 4: Our system.

Figure 5: Illustration of Label Mapping from NLM-180 to XML-22 .

Figure 6: Illustration of extracting discontinuous spans.



4.2 Normalization

We use a learning to rank technique to perform the
normalization task for specific interactions and pre-
cipitants. Formally, for a given mention m, we select
the best term with the highest-ranking score from the
corresponding knowledge source. we first employ
the BM25 model provided by Lucene to retrieve the
top 10 candidate terms for a given mention. Then, for
each pair of a mention and a candidate term, we cal-
culate four scores as matching features: BM25 rank-
ing score, Jaccard similarity score, Longest common
subsequence and word2vec similarity. Finally, we
employ the linear RankSVM, one of the widely-used
methods for learning to rank, to assign a final ranking
score to each candidate term. The top ranked term for
each mention is then chosen as the normalization for
the mention. Finally, we developed simple heuristics
based on the mention span and its associated relation-
ships to match pharmacokinetic effects to National
Cancer Institute Thesaurus codes.

4.3 Results

Concept Extraction
Precision Recall F1

Exact (-type) 42.21 23.55 30.06
Exact (+type) 41.94 23.19 29.87

Relation Extraction
Binary 46.60 29.78 36.34

Binary (+type) 38.19 24.41 29.78
Full (-type) 25.24 16.10 19.66
Full (+type) 25.24 16.10 19.66

Normalization
Micro 32.24 19.99 24.73
Macro 31.90 20.07 23.38

Distinct Interactions
Micro 17.35 9.67 12.42
Macro 17.40 9.70 11.83

Table 4: Results for TEST1 DATASET.

Table 5 and Table ?? show our submitted results
on test datasets for all tasks tasks. These results are
obtained by using the hyperparameters shown in Ta-
ble 3. These hyperparameters are obtained by tun-
ing them on development set. The fact that F1-score
dropped from Task-1 to Task-4 by a huge margin in-
dicates interactions that are repeated in multiple sec-
tions are captured easily when compared with inter-
actions that are mentioned less number of times. Fur-
thermore, extracting triggers and effects of the inter-
actions are harder compared to precipitants. Thus,

Concept Extraction
Precision Recall F1

Exact (-type) 44.96 29.45 35.59
Exact (+type) 44.61 29.31 35.38

Relation Extraction
Binary 50.07 36.86 42.46

Binary (+type) 40.77 30.02 34.58
Full (-type) 22.99 16.83 19.43
Full (+type) 22.99 16.83 19.43

Normalization
Micro 30.82 26.28 28.37
Macro 26.46 23.90 24.52

Distinct Interactions
Micro 12.66 9.59 10.91
Macro 9.74 7.79 8.45

Table 5: Results for TEST2 DATASET.

The results on Task 4 clearly indicate producing in-
dex files coded to multiple terminologies fully auto-
matically is unattainable at this time. However, the
availablility of datasets, especially considering the
size of training and test datasets combined, is encour-
aging and will promote further research to address
this important and challenging problem.

5 Conclusion and Future Work
We reported on using state-of-the-art deep learning
neural networks for identifying mentions and rela-
tions relevant to DDI extraction. In this research,
we proposed a methodology to efficiently map NLM-
180 dataset to official 22 drug labels. Furthermore,
we are the only team to demonstrate a complete end-
to-end system to extraction drug-drug interactions.
Although, the overall results on official test sets are
not very encouraging, this results will inform fu-
ture FDA efforts at automating important safety pro-
cesses, and could potentially lead to future FDA col-
laboration with interested researchers in this area.
Our future directions include: Potential headroom for
improvements:

• Incorporate Knowledge bases (such as UMLS)
into deep learning models to accurately identify
precipitants and interactions.

• Hybrid approach that can better leverage syntac-
tic dependencies to break co-ordinate conjunc-
tions.

• Measure the impact of deep learning models
with respect to size of the training data i.e., us-



ing the official test set (123 XML documents) to
train the models and evaluate on XML-22.

• Leveraging complex encodings such as BIOHD
to encode discontinuous spans into the model.

Leveraging complex encodings such as BIOHD to
encode discontinuous spans into the model.
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