
KlickLabs at the TAC 2018 Drug-drug
Interaction Extraction from Drug Labels Track

Gaurav Baruah and Maheedhar Kolla

Klick Inc., 175 Bloor Street East, Toronto, Ontario M4W 3R8, Canada
gbaruah@klick.com, mkolla@klick.com

Abstract. Detection and extraction of potential drug-drug interactions
from collections of biomedical text is an important problem in automat-
ing pharmacovigilance. The 2018 TAC drug-drug interaction extraction
track aims to compare systems that extract DDIs from Structured Prod-
uct Labelings for drugs. We submitted a baseline system for this years
iteration of the track, to gain a better understanding of the problem, and
to build a base for future work.
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1 Introduction

Drug-drug interactions (DDI) can affect absorption of medications and cause
adverse reactions, potentially endangering patients. The risk is exacerbated for
patients taking multiple medications. Physicians and pharmacists need to keep
track of potential DDIs in order to prescribe effective therapies while minimizing
the risk of adverse effects for patients.

There are vast amounts of text available that describe drugs and their effects
in the form of scientific articles, product labels, social media, electronic health
records, amongst others. Mining these collections of text for potential drug-
drug interactions would not only help researchers and clinicians keep up-to-date
on latest findings, but also help them determine the best treatments for their
patients. DDI detection/extraction could also help patients buying prescribed
medication to be self-aware of possible conflicts.

The “Drug-Drug Interaction Extraction from Drug Labels” track at TAC
2018 works on a very specific task—to detect and extract potential drug-drug
interactions from text, specifically from structured product labelings (SPLs).

The 2018 TAC DDI extraction problem can be broken down into the following
steps:

1. Detecting entities (or mentions) of interest within a sentence: drugs, chemi-
cals, families, classes, foods, symptoms, triggers, causes and effects

2. Extracting relationships (interactions) between entities and estimating the
specific role of an entity in a detected interaction, e.g., is the entity a trigger,
a symptom, or a precipitant
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3. Estimating the specific type of an interaction: Pharmacokinetic, Pharmaco-
dynamic, or Unspecified

4. Normalizing the detected entities and relationships into a standard medical
vocabulary/ontology

We submitted the output of one baseline system for evaluation to the 2018
TAC DDI track. Our system consists of a sentence classifier that predicts whether
a sentence contains an interaction, and a dependency parsing module that re-
turns noun phrases as detected entities.

2 Data, Tasks, and Evaluation Metrics

2.1 Datasets

The track participants were provided with 22 SPLs for training1 (training22).
2 sets of test SPLs were provided: Test1 and Test2, containing 57 and 66 SPLs
respectively.

The track organizers also suggested an additional dataset: the “NLM-DDI
CD corpus DailyMed Cardiovascular Product Labels Annotated with Drug-drug
Interactions”2 (NLM180), prepared and manually annotated by the National Li-
brary of Medicine. The NLM180 dataset contains 180 SPLs.

2.2 Task Description

The main aim of the 2018 TAC drug-drug interaction (DDI) extraction task
was to compare the performance of various NLP methods for the extraction of
DDIs. The track’s participants were mainly tasked to find: (i) the entities that
play a role in an interaction, (ii) the interactions, as well as their specific types.
Furthermore, the task explored normalizing the found entities and interactions
to standard medical terminologies and coding standards like UMLS [1], NDF-RT
NUI 3 and SNOMED CT 4.

Entities (also called mentions) can play one of the following roles in a DDI:

– Precipitants: a drug, a drug class/family, food substance, etc.
– Trigger: a word or phrase characterizes the interaction (e.g. avoid, increase

the risk, etc).
– SpecificInteraction: a symptom or effect of the interaction.

Each entity/mention, once detected, was required to be classified into the par-
ticular role that it plays in an interaction.

Interactions are the relationships between the identified entities. As such, this
task could potentially be tackled as an Entity-Relationship detection/extraction
task. The interactions were required to be classified into one of the following
types:

1 https://bionlp.nlm.nih.gov/tac2018druginteractions/
2 https://lhce-brat.nlm.nih.gov/NLMDDICorpus.htm
3 https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/
4 https://www.nlm.nih.gov/healthit/snomedct/
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– Pharmacokinetic: phrases that indicate changes in physiological functions
– Pharmacodynamic: phrases that describe the effects of the drugs/precipitants
– Unspecified: phrases indicating caution

We did not attempt normalization sub-tasks for this year’s iteration of this
task, and we mainly focus on finding entities/mentions.

2.3 Evaluation metrics

Precision, Recall and F1 were the metrics utilized to measure performance for
all subtasks of the track. For detected entities, the metrics were computed for
exact as well as partial matches; the primary metric was the micro-averaged
F1 for exact matches. For detected interactions, the primary metric was the
micro-averaged F1.

3 Background and Related Work

Automatic drug-drug interaction (DDI) detection could help in enhancing phar-
macovigilance. The key components DDI are drug identification and interac-
tion detection. These key tasks roughly correspond to named-entity recognition
and relationship extraction in conventional Natural Language Processing (NLP)
techniques, although, in biomedical texts.

The 2013 SemEval task of extraction of drug-drug interactions from biomedi-
cal texts [8] has been previously attempted to compare systems that extract DDIs
from the Drugbank [9] database and Medline abstracts. As in the 2018 TAC DDI
task, the two subtasks in the 2013 SemEval tasks were to (i) recognize and clas-
sify pharmacological substances, and (ii) extract interactions between drugs. In
contrast to the target classes specified for the 2018 TAC DDI task, the phar-
macological substances were required to be classified as one of {generic drug
name, brand name, drug group name, and active substances not approved for
human use}. The interactions were required to be classified as {advice, effect,
mechanism, int}.

The key findings from the 2013 SemEval task were that SVMs with non-
linear kernels performed well for the detection of DDIs. For recognition of drugs
or pharmacological substances, conditional random fields and dictionary-based
methods worked best.

Recent advances in deep neural networks have also been used to tackle
the DDI problem. Hierarchical bidirectional long short-term memory [7, 2] (Bi-
LSTM) networks have successfully been developed to advance the state-of-the-
art over the 2013 SemEval DDI dataset [10]. Another recent work tries to learn
a joint model for entity and relation extraction [5], wherein Bi-LSTMs are used
for drug recognition as well as extraction of DDIs.

Both methods take as input word embeddings over biomedical texts. Li
et al. [5] argue that since a large number of new drugs and chemicals are in-
vented each year, conventional dictionary-based methods may fail to scale. Con-
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sequently, they developed character-based embeddings and develop a convolu-
tional neural network model to extract and utilize morphological and lexical
constructs as inputs for drug/entity recognition.

Interestingly, both these methods advocate that the shortest dependency
path in the dependency parse-tree for a sentence, helps to identify semantic
connections between interacting entities (drugs). They both also utilized parts-
of-speech (POS) embeddings as inputs to their model.

4 System development

Recent developments in DDI using neural networks [10, 5] lend support to the
use of dependency parsing and shortest dependency paths for DDI extraction.

For our baseline system, we performed dependency parsing on each sentence
in an SPL, and we returned the noun phrases that were children of root verbs
as entity mentions. We further tried to shortlist sentences on which to perform
dependency parsing, in order to improve performance. We tried unsuccessfully
to reproduce the system described in Li et al. [5] for generating runs; we leave
this work for the future.

The KLncLSTMsentClf system from KlickLabs utilized a two-step process
to find potential interactions and the mentions of interacting entities. Given a
structured product label (SPL), for each sentence in the SPL,

1. A sentence classifier predicts whether a given sentence describes an interac-
tion (Section 4.2).

2. If the sentence potentially contains an interaction, the sentence was parsed
and noun phrases were returned as the interacting entities (Section 4.3).

4.1 Training data preparation

We expanded the provided training-22 dataset with the NLM180 dataset. The
training-22 and NLM180 datasets contain 309 and 2597 sentences respectively
that describe interactions. Additionally, the training-22 and NLM180 datasets
contain 294 and 3236 sentences that do not contain interactions. In total we have
an expanded dataset containing 6436 sentences for training a sentence classifier
to predict whether a sentence potentially contains an interaction. We utilized the
mapping provided in the track guidelines 5 to translate labels from the NLM180
dataset to the TAC training-22 set. We did observe that the translated labels
were noisy in nature.

4.2 Sentence Classifier for potential interactions

We initially trained two classifiers with 5-fold cross validation for sentence clas-
sification to predict potential interactions:

5 https://bionlp.nlm.nih.gov/tac2018druginteractions/
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– A random forest model; classification accuracy of 84.9% over the expanded
training set

– A bidirectional LSTM neural network model; classification accuracy of 96.2%
over the expanded training set

Thus, for step 1 in KLncLSTMsentClf, we utilized a neural network model
with 2 layers of bidirectional LSTMs on the expanded training set to predict
whether a sentence contains an interaction. The model takes as input word em-
bedding representations of tokens in a sentence; these embeddings were sourced
from http://bio.nlplab.org/#word-vectors and they were trained on Pubmed,
PMC and Wikipedia articles [6].

4.3 Mentions extraction from sentences

For step 2 in KLncLSTMsentClf, we utilized SpaCy [4] (https://spacy.io/) to
tokenize and perform dependency parsing [3] on each sentence shortlisted in step
1. We observed that most of the noun-phrases in sentences contained mentions of
the entities in the sentences that contained interactions. Given that there exist
many multi-word symptoms, disease names, and chemical reactions, we returned
the entire noun phrase as a mention.

5 Results and Discussion

For test set Test1, for detecting entities/mentions, KLncLSTMsentClf gets an F1
of 9.04 and 12.78, when evaluated with and without entity role types respectively.
Our sentence classifier identifies sentences describing DDIs with an accuracy of
74.7%, with precision of 0.47 and a recall of 0.62, for Test1.

For test set Test2, for detecting entities/mentions, KLncLSTMsentClf gets
an F1 of 8.01 and 11.10, when evaluated with and without entity role types
respectively. Our sentence classifier identifies sentences describing DDIs with an
accuracy of 76.6%, with precision of 0.49 and a recall of 0.67, for Test2.

Even though our DDI sentence classifier achieves reasonable accuracy, it has
low precision. Additionally, for our true-positive set of sentences, we observed
that many multi-word noun phrases (that we returned) did not correspond to
mentions in the gold standard. Although our returned words seem to overlap
well with the gold standard, the returned token strings were not in the correct
sequence or did not have the correct length, as per the mentions in the gold stan-
dard. As such, our baseline system performs well below the median performance
for the track.

6 Conclusion

We submitted one system to the Drug-drug interaction extraction from drug
labels track at TAC 2018. Our system consisted of a sentence classifier—that
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shortlisted sentences containing potential interactions, and a noun chunker—
that attempted to return multi-word mentions of precipitants, triggers, and spe-
cific interactions. In the future, we plan to implement and research deep neural
network architectures for this task.
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