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Abstract

This draft paper describes our participa-
tion in the TAC SRIE 2018 Challenge for
extracting experimental design factors for
the systematic review process from the
method section of biomedical journal ar-
ticles. We discuss our system, medaCy, a
python-based supervised multi-class clas-
sification system that uses Conditional
Random Fields. Our system place fourth
for the challenge. The results show that
we are better able to identify Animal and
Dose Group design factors than Exposure
and Endpoint. This paper includes an anal-
ysis of our results and future directions to
improve the extraction.

1 Introduction

Systematic reviews are necessary to create an ex-
haustive summary of current evidence relevant to a
research question. They are a fundamental for ex-
perimental design and analysis. The process is es-
sentially an information organization task consist-
ing of information retrieval, extraction and analy-
sis task [LB16]. However the time required to con-
duct a review is not trivial. Petrosino, et al. [Pet99]
estimate that it takes approximately six people
more than 1,000 hours to complete a systematic
reviews.

To address this challenge, we present medaCy,
a supervised multi-class classification system to
automatically identify experimental design factors
for the categories of exposure, animal group, dose
group, and endpoint from journal articles describ-
ing experiments related to toxicity and health ef-
fects of environmental agents.

2 Methods

This section describes the underlying methodol-
ogy of our NER system.

2.1 MedaCy
The python based NER framework, medaCy, is
utilized to facilitate the construction and train-
ing of supervised machine learning models for
the extraction of experimental design factors from
the literature. MedaCy decomposes the learn-
ing task of named entity recognition into four
sequential components: text tokenization, token-
grouping by rule-sets, feature extraction, and
training/prediction. Each of these components are
tuned and optimized for the particular entities in
need of extraction. This framework comes pre-
equipped with feature extraction utilities that di-
rectly incorporate various tools (e.g. MetaMap
[Aro01]) and lexicons (e.g. []). MedaCy’s flexibil-
ity allows for the easy creation of pipelines and in-
cludes several pre-defined pipelines as adjustable
starting-off points for the building of highly pre-
dictive bio-medical text NER systems.

2.2 MedaCy on Systematic Reviews
The extraction of systematic reviews manifests as
an extension of the pre-built medaCy pipeline.
Namely, the following steps occur in sequence:

1. Preprocessing

• Remove non-ascii characters from the
text documents

2. Tokenization

• Character-level tokenization is applied
to the original text.

• Tokens (at this stage individual charac-
ters) are merged together if certain con-
ditions are met. Example merge-rules



include membership in medical lexicons
such as pre-defined units of mass or
volume or the existence of a mapping
to a UMLS concept. These rules are
not used to classify entities but rather
to aggregate similar characters together
prior to feature extraction and super-
vised model training.

3. Feature Extraction.

• For each merged and un-merged to-
ken, the standard set of text process-
ing features are extracted alongside
UMLS concept mappings and unit pat-
tern matching in a window size of five.
These feature include: morphological,
orthographic, lexical, syntactic and se-
mantic.

4. Machine Learning

• The Conditional Random Fields (CRF)
supervised classification algorithm is
trained and then utilized for prediction.
The benefit of CRFs is they are capable
of capturing label inter-dependencies.

The incorporation of character-level splitting
and later selective merging aid in the decomposi-
tion of text into meaningful instances for classifi-
cation and speculatively, however intuitively, it as-
sists the classification algorithm in overcoming in-
evitable annotation noise present in training data.

2.3 Replicability and Reproducibility

The utilization of a standardized frame-
work such as medaCy ensures the repli-
cability of the system described above.
MedaCy can be found and installed here:
https://github.com/NanoNLP/medaCy. The sys-
tem described above has been wrapped under the
SystematicReviewPipeline and can be utilized as
described in the documentation. To reproduce
results found below, a user must run the Sys-
tematicReviewPipeline over the TAC 2018 SRIE
dataset.

3 Data

The 2018 TAC SRIE dataset provided by the TAC
organizers contain experimental design factors for
the categories of exposure, animal group, dose

Table 1: Entities from the TAC SRIE dataset
Category Entities Train Test

Exposure
TestArticle 1831 2207
Vehicle 417 358
TestArticlePurity 26 19
TestArticleVerification 5 2

Animal Group

GroupName 939 1058
GroupSize 367 496
SampleSize 43 74
Species 1585 1639
Strain 372 338
Sex 574 608
CellLine 39 91

Dose Group

Dose 637 611
DoseUnits 472 441
DoseFrequency 92 106
DoseDuration 210 188
DoseDurationUnits 198 176
DoseRoute 558 524
TimeAtDose 115 56
TimeUnits 594 733
TimeAtFirstDose 45 66
TimeAtLastDose 21 44

Endpoint
Endpoint 4316 3756
EndpointUnitOfMeasure 682 698
TimeEndpointAssessed 659 830

group, and endpoint from journal articles describ-
ing experiments related to toxicity and health ef-
fects of environmental agents. The data was di-
vided into two subsets: training set and test set.
The training set includes 97 articles and the test set
contains 444 articles of which 100 were annotated
as the gold standard. Table 1 shows each the enti-
ties categories and each entity type with the num-
ber of instances in the training data (Train) and test
data (Test).

4 Results

Table 2 shows our reported results and the results
of the top performing system. Results show that
our system obtains an overall higher precision at
extracting the entities than recall.

Table 2: Reported performances of our system and the best

system
Team run TP FP FN Precision Recall F1

Best system 9401 6846 5720 0.579 0.622 0.6
Our system 4183 4582 10893 0.477 0.278 0.351

Table 3 shows the results over each of the differ-
ent design factor categories. The results show that
our system is better able to identify Animal and
Dose Group entities than Endpoint and Exposure.

Table 4 shows the Precision, Recall and F-1
score on the training corpus for each of the differ-
ent entities using 10-fold cross validation. The ta-



Table 3: Performance of each category
Category Precision Recall F1

Exposure 0.398 0.162 0.215
Animal Group 0.658 0.485 0.668
Dose Group 0.417 0.399 0.414
Endpoint 0.269 0.454 0.194

ble also contains the minimum and maximum F-1
score over the folds. These results are based on an
exact match of the system prediction with the hu-
man annotations. The results show a high volatil-
ity of scores between the folds indicating a high
variability of the data within the folds.

Table 4: 10-fold Cross Validation Results on Training Data
Category Entity Precision Recall F1 F1Min F1Max

Exposure
TestArticle (1831) 0.559 0.339 0.372 0.265 0.515
Vehicle (417) 0.578 0.33 0.371 0.201 0.495
TestArticlePurity (26) 0.398 0.126 0.172 0 0.4

Animal Group

GroupName (939) 0.585 0.334 0.379 0.13 0.491
GroupSize (367) 0.682 0.547 0.587 0.222 0.724
SampleSize (43) 0.292 0.2 0.197 0 0.791
Sex (574) 0.818 0.622 0.69 0.411 0.829
Species (1585) 0.792 0.632 0.697 0.493 0.777
Strain (372) 0.816 0.522 0.626 0.397 0.756
CellLine (39) 0.853 0.502 0.587 0.273 0.778

Dose Group

Dose (637) 0.621 0.481 0.514 0.274 0.605
DoseDuration (210) 0.429 0.3 0.296 0.1 0.488
DoseDurationUnits (198) 0.422 0.276 0.304 0 0.634
DoseFrequency (92) 0.325 0.11 0.148 0 0.444
DoseRoute (558) 0.547 0.196 0.221 0.03 0.466
DoseUnits (472) 0.703 0.585 0.623 0.485 0.733
TimeAtDose (115) 0.252 0.077 0.109 0 0.31
TimeAtFirstDose (45) 0.02 0.033 0.025 0 0.25
TimeAtLastDose (21) 0 0 0 0 0
TimeUnits (594) 0.549 0.305 0.378 0.224 0.55

Endpoint
Endpoint (4316) 0.528 0.164 0.242 0.157 0.337
EndpointUnit0fMeasure (682) 0.39 0.11 0.126 0.022 0.259
TimeEndpointAssessed (659) 0.405 0.19 0.242 0.131 0.37

System Train 0.474 0.356 0.311 0.114 0.397

Table 5 shows the Precision, Recall and F-1
score on the test corpus of our submitted results
using a mention threshold of 0.5. Given the thresh-
old these results are lower than what would be ex-
pected from the training data. We believe that this
is due to the removal of the non-ascii characters
from the data set which throws off our spacing.

Overall the test results show that our system ob-
tains a higher precision than recall for a majority
of the entities. This indicates the variability in the
entities is quite high.

5 Error Analysis

One limitation of current system is that it does
not take non-ascii characters as input. Our pre-
preprocessing step removes contiguous non-ascii
characters replacing them with a space. This al-
lows for utf-16 characters to be replaced with a
single space but threw off our character count
when there were two utf-8 characters were in a
row. For example, -TCR-PerCP has two utf-8
characters and should be replaced with two spaces;
and mean SEM contains a utf-16 character and

Table 5: Reported results for each entity types on test data
Category Entity Precision Recall F1

Exposure
TestArticle (2207) 0.606 0.117 0.196
Vehicle (358) 0.463 0.264 0.336
TestArticlePurity (19) 0.125 0.105 0.114

Animal Group

GroupName (1058) 0.537 0.241 0.333
GroupSize (496) 0.713 0.447 0.549
SampleSize (74) 0.444 0.541 0.964
Sex (608) 0.889 0.697 0.781
Species (1639) 0.855 0.607 0.71
Strain (338) 0.766 0.421 0.544
CellLine(91) 0.4 0.440 0.792

Dose Group

Dose (611) 0.458 0.251 0.325
DoseDuration (188) 0.145 0.642 0.889
DoseDurationUnits (176) 0.354 0.971 0.153
DoseFrequency (106) 0.548 0.219 0.313
DoseRoute (524) 0.584 0.508 0.543
DoseUnits (441) 0.473 0.283 0.354
TimeAtDose (56) 0.682 0.536 0.6
TimeAtFirstDose (66) 0.588 0.152 0.241
TimeAtLastDose (44) 0.5 0.227 0.435
TimeUnits (733) 0.522 0.198 0.287

Endpoint
Endpoint (3756) 0.291 0.254 0.271
EndpointUnit0fMeasure (698) 0.252 0.981 0.141
TimeEndpointAssessed (830) 0.263 0.126 0.17

System Test 0.486 0.283 0.358

should be replaced with one character. Our pre-
processing did not take this into consideration.

Our current system combines Dose and Dose
Units; and DoseDuration and DoseDurationUnits.
In the future, we need to incoporate a post-
processing step to separate the entity into their re-
spective subsets.

For the Endpoint entity, the recall results are
quite low. One difficulty with Endpoint is that
the mentions of the endpoint are not contiguous.
For example, in the segement: uteri were dissected
free of adhering fat and connective tissue, drained
of intraluminal fluid, and weighed. The endpoint
label is uteri weighed. Currently, our system does
not support this type of annotation; and trains the
entire segment as an Endpoint. This increases the
variability of endpoints in the data making it diffi-
cult to learn.

6 Conclusion

This paper described our participation in the TAC
SRIE 2018 Challenge for extracting experimental
design factors for the systematic review process
from the method section of biomedical journal ar-
ticles. We discuss our system, medaCy, a python-
based supervised multi-class classification system
that uses Conditional Random Fields. Our system
place fourth for the challenge. The results show
that we are better able to identify Animal and Dose
Group design factors than Exposure and Endpoint.
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