
	 1	

OPERA:	Operations-oriented	Probabilistic	Extraction,	Reasoning,	and	Analysis	

Eduard	Hovy	(PI),	Taylor	Berg-Kirkpatrick,	Jaime	Carbonell,	Hans	Chalupsky*,	
Anatole	Gershman,	Alex	Hauptmann,	Florian	Metze,	Teruko	Mitamura,	

and	students	
Aditi	Chaudhary,	Xianyang	Chen,	Bernie	Po-Yao	Huang,	Hector	Zhengzhong	Liu,	
Xuezhe	Ma,	Shruti	Palaskar,	Dheeraj	Rajagopal,	Maria	Ryskina,	Ramon	Salabria	

Carnegie	Mellon	University		
*Information	Sciences	Institute	of	the	University	of	Southern	California	

Abstract	

This	paper	describes	CMU	and	USC/ISI’s	OPERA	system	that	performs	end-
to-end	information	extraction	from	multiple	media,	integrates	results	across	
English,	Russian,	and	Ukrainian,	produces	Knowledge	Bases	containing	the	
extracted	information,	and	performs	hypothesis	reasoning	over	the	results.			

1 System	Summary	

OPERA	is	an	integrated	solution	to	the	challenges	of	DARPA’s	AIDA	program:		

• Existing	 high-performance	 media	 analysis	 (TA1):	 We	 use	 and	 build	 upon	
CMU’s	existing	information	extraction	and	understanding	technology,	developed	
in	 prior	 DARPA,	 IARPA,	 and	 other	 programs,	 that	 processes	 text	 (various	
genres),	 images,	 video,	 and	 speech.	 	 Each	 medium	 includes	 one	 or	 more	 TA1	
analysis	engines	that	produce	output	in	a	consistent	uniform	json	formalism.			

• Semantic	 representation	 and	 reasoning	 support	 (TA2	 and	 TA3):	 OPERA	
employs	USC/ISI’s	PowerLoom	knowledge	representation	and	reasoning	system,	
developed	and	used	in	numerous	DARPA	programs,	that	provides	an	expressive	
predicate	 logic	 representation	 language,	 several	 powerful	 deductive	 and	
abductive	 inference	 mechanisms,	 contextual	 and	 hypothetical	 inference,	
inference	 justifications	 and	 truth	maintenance,	 and	database	 integration.	 	 This	
system	accepts	the	TA1	engines’	json	output	and	stores	the	results	into	OPERA’s	
central	semantic	repository	(CSR)	using	database	technology.			

• Cross-medium	 and	 cross-language	 integration	 (TA2):	 We	 develop	
approaches	 to	 integrate	 the	 interpretations	 of	 the	 TA1	 engines.	 	 This	 includes	
coreference	of	terms	across	the	various	domain	languages	(produced	by	the	TA1	
text	 engines)	 as	 well	 as	 across	 the	 outputs	 of	 speech,	 image/video,	 and	 text	
interpretation	technology.			

• Hypothesis	 creation,	 management,	 and	 utility-based	 hypothesis	 space	
exploration	 (TA3)	 (both	 standalone	 and	 guided	 by	 the	 analyst):	 OPERA	
includes	 two	 alternative	 pathways	 for	 hypothesis	 creation	 and	 hypothesis-
driven	 (re)interpretation	 and	 reasoning.	 	 One	 uses	 PowerLoom,	 with	 the	
addition	of	a	probabilistic	hypothesis	reasoning	engine	with	sophisticated	belief	
calculation	 and	 propagation.	 	 The	 other	 is	 a	 novel	 Belief	 Propagation	 system	
built	 for	 the	 project	 that	 uses	 factor	 graphs	 to	 represent	 interpretation	
alternatives	and	larger	hypotheses	concisely	and	effectively.				

	 2	

• Framework	 (computational	 and	 semantic):	 for	 OPERA	 we	 build	 a	
computational	 framework	 that	 integrates	 all	 the	 modules	 and	 facilitates	
connection	 with	 TA4	 environments.	 	 Also,	 in	 conjunction	 with	 other	 program	
performers,	we	 develop	 a	 top-level	 terminology	 ontology	 plus	 domain-specific	
detailed	extensions	of	it.			

2 Technical	Components		

2.1 TA1	Text:	Entity	Processing		

This	component	focuses	on	the	identification,	extraction,	and	linking/coreference	of	
entities	within	individual	texts.	 	It	also	includes	work	on	identifying	and	extracting	
the	properties	(=	relations)	of	entities.			

Entity	 extraction:	For	OPERA	we	re-implemented	our	EDL	system,	built	 in	2013–
16	under	DARPA’s	DEFT	program.		It	is	now	faster,	and	re-trained	on	a	selection	of	
entities	more	suited	to	the	AIDA	domain.			As	part	of	this	work	we	deployed	a	new	
NER	 system,	 built	 at	 CMU,	 that	 combines	 character-level	 and	 word-level	
representations	with	a	CRF	model	(Ma	and	Hovy,	2016).		On example AIDA domain
texts, this system produced an F-score of 54.9 (though on the entities relevant to the
domain, the score was 71.1), with the score for nominals being 32.5. 	

Relation/property	extraction:	We	have	implemented	and	built	a	relation	extractor	
that	identifies	and	extracts	entity	properties.		We	designed	the	system	of	four	parts:	
vector	 representation,	 CNN	 convolution,	 piecewise	 max	 pooling,	 and	 softmax	
output.		The	inputs	to	the	network	are	raw	word	tokens,	which	are	transformed	into	
low-dimensional	vectors.	 	Because	an	 input	 sentence	 that	 is	marked	as	 containing	
the	target	entities	corresponds	only	to	a	relation	type	and	it	does	not	predict	labels	
for	 each	word,	 it	might	 be	 necessary	 to	 utilize	 all	 local	 features	 and	 perform	 this	
prediction	globally.		Therefore,	the	convolution	approach	is	employed	to	extract	and	
merge	 all	 local	 features.	 In	 piecewise	 max	 pooling,	 the	 input	 feature	 is	 split	 into	
three	 segments	 according	 to	 the	 positions	 of	 the	 entity	 pair,	 and	 piecewise	 max	
pooling	returns	 the	maximum	value	 in	each	segment	 instead	of	a	single	maximum	
value.	 	Hence,	 piecewise	max	 pooling	 can	 capture	 structural	 information	 between	
two	 entities.	 	 Finally,	 the	 output	 is	 fed	 into	 a	 softmax	 classifier	 to	 compute	 the	
confidence	of	each	relation.		The	system	achieves	state-of-the-art	performance.			

2.2 TA1	Russian	and	Ukrainian	Processing		

Our	 initial	 goal	 was	 to	 parse	 Russian	 and	 Ukrainian	 sentences	 into	 Universal	
Dependencies	 (UD)	 trees	 with	 native	 words	 referring	 to	 entities,	 events,	 and	
relations,	 each	 one	 substituted	 with	 its	 appropriate	 ontological	 reference(s),	
thereby	 enabling	 the	 English	 event	 extraction	 module	 (Section	 2.3)	 to	 produce	
workable	KEs	for	coreference	and	subsequent	inclusion	into	the	CSR.		We	wanted	to	
avoid	using	MT	tools	for	two	reasons:	(1)	sufficiently	accurate	MT	tools	may	not	be	
available	 for	 every	 language	 of	 interest	 and	 (2)	 training	 an	 MT	 tool	 is	 a	 harder	
problem	than	extraction	itself.		We	largely	achieved	this	goal	although	the	accuracy	
is	far	from	perfect.		For	the	next	iteration	of	the	project,	we	are	exploring	alternative	

	 3	

approaches	focusing	on	the	creation	of	domain-specific	semantic	parsers	that	elicit	
the	necessary	knowledge	from	the	users	without	requiring	annotated	texts.			
Entities:	 In	the	 interim	our	solution	 is	as	 follows.	 	After	POS	tagging	the	sentence,	
rules	delimit	NP	chunks	and	then	identify	the	head	noun	of	each	chunk.		Linking	the	
head	 noun	 into	 the	 OPERA	 ontology	 (currently	 using	manually	 created	mappings	
specific	to	the	domain	lexicon)	allows	the	extractor	to	return	a	unit	(the	chunk)	with	
its	ontology	node	as	its	type,	but	without	any	detailed	further	information.			
NER:	A	principal	challenge	during	the	initial	phase	is	the	absence	of	decent	named	
entities	extractors	for	Russian	and	Ukrainian.	 	To	meet	this	challenge	we	relied	on	
extensive	lists	of	named	entities	specific	to	the	Russia-Ukraine	conflict	(we	created	a	
Named	 Entity	 glossary	 from	 our	 pre-ontology	 analysis	 of	 the	 domain	 corpus	
word/type	distributions)	and	on	“fuzzy”	matching	heuristics.		We	believe	that	this	is	
not	 an	 expediency	 trick	 but	 a	 legitimate	 approach—there	 is	 a	 finite	 number	 of	
Ukrainian	towns	with	a	finite	number	of	variations	of	their	spelling.			

Parsing:	 We	 identified	 several	 Russian	 parsers,	 tested	 them,	 and	 after	 some	
exploration	 selected	 the	 Universal	 Dependency	 parser	 UDPipe	 1.2	 (Straka	 and	
Strakova,	 2017).	 	 We	 used	 it	 with	 the	 Babylon	 lexicon	 and	 the	 Extended	 Open	
Multilingual	Wordnet.	 	After	producing	an	 initial	parse,	with	appropriate	 linguistic	
features,	we	then	apply	the	above	Entity	and	NER	systems.		Given	an	input	sentence,	
each	NP	or	V	chunk	is	returned	to	the	core	entity	assembler	described	in	Section	2.3.		
Each	such	chunk	contains:		
• the	text	span		
• its	type		
• its	head		
• the	head’s	ontology	item		
• other	relevant	linguistic	features	(e.g.,	case	and	number	for	NPs,	or	tense	for	Vs).			

The	 English	 event	 extractor	 is	 still	 unable	 to	 use	 Russian	 and	 Ukrainian	 case	
markers.	 	We	are	now	designing	a	truly	multi-lingual	event/relation	extractor	that	
uses	universal	dependencies	and	universal	grammatical	features.	

Lexical	 and	 other	 resources:	 We	 have	 found	 reasonably	 high-quality	 Russian	
lexical	 resources,	 including	 the	 AOT	 Russian-English	 dictionary,	 the	 Babylon	
Russian-English	 dictionary	 (BGL),	 the	 Extended	 Open	 Multilingual	 Wordnet	 (RUS	
and	UKR),	and	a	transliteration	package	(transliterate	1.10.1)	for	names.			
Ukrainian:	 We	 searched	 extensively	 for	 adequate	 Ukrainian	 technology	 and	
resources,	but	found	nothing	useful.		In	the	mean	time,	we	tried	MT	from	Ukrainian	
to	Russian	and	then	using	the	Russian	solution.		It	worked	surprisingly	well.			

2.3 TA1	Text:	Event	Processing		
This	module	plays	a	central	role	in	the	text-based	OPERA	pipeline.		It	accepts	input	
from	 entity	 processing	 (Section	 2.1)	 and	 Russian	 and	 Ukrainian	 analysis	 (Section	
2.2),	and	 then	performs	event	detection	and	 frame	selection.	 	 It	 then	combines	all	
the	information	to	produce	instantiated	frames.	 	It	outputs	KEs	for	events,	entities,	
and	relations,	and	uploads	them	into	the	Central	Semantic	Repository	CSR.				

	 4	

Migrating	 and	 extending	 the	 argument	 extractor:	 Since	 the	 arguments	 for	 the	
AIDA	 knowledge	 base	 are	 also	 governed	 by	 an	 ontology,	 we	 convert	 the	 found	
arguments	 to	 this	ontology	 to	allow	knowledge	propagation.	 	We	also	migrate	our	
prior	 argument	 extractor	 to	 the	 new	 scenarios.	 	 We	 have	 extended	 our	 existing	
argument	extractor,	 are	based	on	Propbank,	 to	now	use	FrameNet,	which	 is	more	
robust	for	our	purposes.		

Traditional	argument	extraction	follows	the	semantic	role	labeling	approach,	where	
the	 arguments	 are	 extracted	 locally,	 often	 with	 the	 help	 of	 a	 syntactic	 tree.	 	 We	
extend	 our	 previous	 work	 to	 also	 cover	 some	 implicit	 arguments,	 using	 scripts.	
Currently,	we	have	 trained	 some	basic	 implicit	 argument	 detection	models.	 	 They	
can	be	easily	integrated	with	the	system	since	the	implicit	arguments	are	also	based	
on	Propbank	and	FrameNet.			
Identifying	the	important	content	in	documents:	 	In	order	to	deal	with	an	semi-
open	domain,	we	obtain	word-frequency	statistics	from	the	Gigaword	news	articles	
and	 their	 human-written	 abstracts.	 	 We	 have	 successfully	 built	 a	 feature-	 and	 a	
neural	network	model	for	this	task.		Precision@1	reaches	50%	and	Precision@10	is	
as	high	as	36%,	showing	that	salience	estimation	is	quite	accurate	for	the	top	events.	

Event	 assembly:	 We	 extended	 coverage	 and	 performance	 of	 the	 top-level	 event	
detector	 and	 event	 structure	 integrator.	 	 It	 now	 accepts	 inputs	 from	 the	 entity	
extractor	 and	 the	 relation	 extractor	 (Section	 2.1)	 and	 the	multilingual	 entity	 and	
event	extractors	(Section	2.2),	integrates	them	all	into	event	structures	(frames)	and	
performs	limited	within-document	coreference	on	entities	and	events.				

2.4 TA1	Images/Video	Processing		
The	 goals	 of	 this	 component	 are:	 (1)	 knowledge	 extraction	 from	 visual	 media	
(images	and	video),	 (2)	conversion	and	harmonizing	output	 into	a	 format	suitable	
for	connecting	 into	 the	AIDA	and/or	OPERA	ontology,	and	(3)	 integration	 into	 the	
OPERA	pipeline	and	the	AIDA	evaluations.		
We	put	 in	place	the	visual	(image	and	video	processing)	component	of	 the	OPERA	
pipeline.		An	overview	is	shown	in	Figure	1.		After	preprocessing,	the	visual	content	
is	 passed	 through	 four	 visual	 knowledge	 element	 extraction	 units,	 including	
classification	(finding	WHAT	is	inside),	detection	(finding	WHERE	is	the	entity),	OCR	
(recognizing	 characters	 within	 an	 image	 or	 video)	 and	 extracting	metadata.	 	 The	
pipeline	 takes	 raw	 image	 (jpg,	 png,	 bmp	 files)	 and	 video	 (mp4	 files)	 directly	 and	
generates	OPERA’s	json	CSR	output.			

Table	 1	 shows	 results	 of	 the	OPERA	 visual	 pipeline.	 For	 quantitative	 analysis,	we	
manually	labeled	1103	in-domain	images	with	10	selected	classes	and	evaluated	the	
model	with	standard	metrics.	 	As	can	be	seen,	both	results	are	reasonable,	and	the	
model	is	robust	against	in-domain	noise.		However,	we	think	the	contribution	of	the	
visual	 part	 is	 still	 ambiguous	 without	 building	 the	 link	 to	 the	 text	 content.		
Therefore,	 we	 conducted	 cross-modal	 linking/coreference	 (in	 the	 current	 phase)	
and	plan	to	explore	visual	name	entity	recognition	in	the	next	phase.			

	

	 5	

	
Figure	1.	OPERA	image/video	processing	pipeline:	I/O,	preprocessing,	extraction,	

merging/coreference	in	white,	green,	orange,	blue	color	respectively.	

	
Table	1.	Quantitative	result	for	OPERA	in-domain	visual	entity	extraction.	

Harmonizing	 visual	 ontology	 with	 the	 OPERA	 ontology:	 	 The	 image	
detection/classification	model	 is	based	on	the	ResNet101	model	pretrained	on	the	
Open	 Image	 dataset.	 	 It	 contains	 5000+	 visual	 concepts.	 	 The	 video	 classification	
model	is	pretrained	on	Youtube8M	and	Kinetics	and	contains	5000+	visual	concepts.		
For	OPERA,	we	further	manually	selected	2,100+	visual	concepts	of	the	union	of	two	
concept	pools	as	the	final	pool	for	visual	entity	classification.	 	In	this	pool,	800+	of	
the	visual	concepts	are	localizable,	which	means	we	can	further	generate	bounding	
boxes	to	localize	the	visual	entities.		For	OPERA	in-domain	data,	we	further	trained	
24	 unique	 new	 concepts	 (e.g.,	 the	 Ukraine	 national	 flag)	 to	 localize	 critical	
information.	 After	 merging/trimming/filtering	 based	 on	 the	 visual	 ontology,	 we	
finalized	a	visual	pool	with	224	visual	concepts.		The	extraction	result	is	then	sent	to	
cross-modal	 coreference	 for	 assembly	 with	 other	 TA1	 outputs.	 	 We	 also	 use	
clustering	to	generate	cross	image	coreference	for	TA2	visual	outputs.	

Cooperating	with	other	parts	of	OPERA,	we	built	the	visual	ontologies	based	on	the	
WordNet	hierarchy	and	Google’s	knowledge	graph.		As	shown	in	Figure	2,	we	have	a	
three-	and	four–level	hierarchy	for	the	video	and	image	ontology	respectively.	 	We	
facilitate	these	two	ontologies	to	define	the	further	shrink	to	a	224-type	ontology	on	
which	we	then	perform	type	matching	to	the	OPERA	text	ontology.	

	 6	

	
Figure	2.	Visualization	of	OPERA	video	ontology	(left)	and	image	ontology	(right).		

2.5 TA1	Speech/Audio	Processing		

We	are	building	Automatic	Speech	Recognition	(ASR)	systems	to	recognize	Russian,	
Ukrainian	and	English	speech	in	the	AIDA	domains.	 	We	are	exploring	the	use	of	a	
“context”	frame	to	help	disambiguate	decisions,	a	procedure	we	have	demonstrated	
in	recent	publications	helps	with	for	English	How-To	videos.		
Initially,	 we	 transcribed	 videos	 in	 English,	 Ukrainian,	 and	 Russian,	 by	 setting	 up	
three	 separate	 pretrained	 systems.	 We	 next	 conditioned	 these	 ASR	 systems	 to	
recognize	Russian,	Ukrainian,	and	English	speech	using	a	“context”	frame.		We	found	
more	speech	in	the	evaluation	test	video	than	we	could	computationally	handle	and	
made	selections	based	on	the	apparent	relevance	of	each	segment.			
Language	and	segment	detection:	We	built	a	speech-based	language	detector	by	
using	 the	 posterior	 probabilities	 of	 each	 recognizer,	 assigning	 each	 video	 to	 the	
language	 with	 the	 highest	 average	 posterior.	 We	 also	 integrated	 speech	
segmentation	into	the	pipeline,	to	separate	non-speech	parts	from	speech.			

Pipeline:	We	integrated	the	ASR	systems	and	the	speech-based	language	detection	
in	a	more	general	pipeline	where	the	input	was	a	list	of	video	files	and	the	output	a	
list	of	text	files	containing	the	transcriptions	of	each	video	in	the	predicted	language.	
Finally,	we	parallelize	the	whole	pipeline	so	that	we	could	automatically	transcribe	a	
considerable	quantity	of	videos	in	a	decent	amount	of	time.		

2.6 TA2	Cross-Medium	Coreference		
The	 goals	 of	 this	 component	 are	 to:	 (1)	match	 knowledge	 extracted	 from	a	 visual	
media	document	to	knowledge	extracted	from	text,	and	(2)	create	co-reference	links	
across	documents	 in	different	media.	 	A	 specific	 challenge	 is	 to	 identify	 individual	
people	and	connect	them	to	their	activities	described	in	the	textual	documents.		We	
did	not	deploy	this	component	in	the	September	pre-evaluation.			

	 7	

2.7 TA2	Cross-Document/Cross-Language	Coreference	

The	goal	of	this	module	 is	 to	merge	the	 individual	per-document	knowledge	bases	
(mini-KBs)	 into	 a	 single	 graph	 via	 cross-document	 event	 and	 entity	 linking.	 	 We	
create	and	deploy	technology	to	perform	coreference	of	entity	and	event	KEs	drawn	
from	different	text	documents	(and	hence	also	different	languages).			

We	view	the	cross-document	entity	linking	as	a	clustering	problem,	where	instances	
to	be	clustered	are	established	coreference	chains	within	each	document,	including	
singleton	 mentions.	 	 We	 tried	 a	 simple	 clustering	 approach,	 representing	 each	
coreference	 chain	 as	 its	 embedding	 vector	 and	 then	 merging	 them	 with	
agglomerative	clustering.			
To	compute	an	embedding	for	a	coreference	chain,	we	concatenated	the	individual	
mentions	and	then	created	a	sentence	embedding	of	the	sequence.		Since	we	do	not	
have	 a	 large	 in-domain	 corpus	 to	 train	 our	 own	 sentence	 embedding	method,	we	
used	 a	 simple	 approach	 of	 Arora	 et	 al.	 that	 does	 not	 require	 training.	 	 Sentence	
embeddings	 were	 computed	 by	 averaging	 word	 embedding	 vectors,	 weighted	 by	
smooth	inverse	frequency.	We	computed	the	embeddings	for	a	sequence	of	contexts	
of	individual	mentions	in	the	same	fashion,	and	averaged	the	two	together	to	create	
a	more	balanced	representation.	 	We	used	pretrained	FastText	embedding	vectors	
as	word	embeddings	for	each	of	the	three	languages.			

We	used	a	simple	agglomerative	clustering	method,	empirically	setting	the	distance	
threshold	for	merging	the	clusters.		Since	we	have	decided	to	focus	on	precision,	the	
distance	 threshold	 has	 to	 be	 set	 quite	 low,	 so	most	 of	 the	 effect	 could	 have	 been	
captured	 by	 simple	 string	 matching	 features.	 	 However,	 embeddings	 let	 us	 go	
beyond	 string	matching:	 to	 some	 extent,	 they	 capture	 synonyms	 (e.g.,	 troops	 and	
armed	 forces),	 and	 subword	 information	 in	 FastText	 gives	 us	 some	 flexibility	 in	
spelling	(such	as	merging	mentions	of	Kiev	and	Kyiv).	

Finally,	 we	 established	 entity	 links	 across	 the	 languages.	 	 Since	 projecting	 the	
embedding	spaces	of	different	 languages	into	the	same	shared	space	may	be	noisy	
and	unreliable,	we	chose	to	rely	on	the	cross-lingual	mapping	of	the	database	links	
extracted	with	DBpedia	 Spotlight	 and	 the	 translations	of	named	entities	 extracted	
from	 manually	 collected	 glossaries.	 	 However,	 since	 both	 cross-lingual	 mappings	
and	monolingual	clustering	are	noisy,	we	may	end	up	with	conflicting	evidence	(for	
example,	a	coreference	chain	that	contains	 links	to	different	DBPedia	entries,	such	
as	Donetsk	Republic,	 an	organization,	and	Donetsk	People's	Republic,	 a	proto-state).		
We	 implemented	 two	 ways	 to	 handle	 these	 discrepancies:	 a	 more	 precision-
oriented	 one	 that	 intersects	 the	 cross-lingual	 and	monolingual	 links,	 breaking	 up	
clusters	into	parts	that	all	map	to	a	single	database	entry	and	linking	those;	and	one	
that	allows	for	more	recall,	combining	all	information	from	both	sides	and	accepting	
all	merging	 decisions.	 	 The	 latter	might	 introduce	 clustering	 noise	 but	 also	might	
allow	the	two	components	correct	each	other's	mistakes,	while	the	former	may	be	
too	sparse.			
Our	 current	 implementation	 establishes	 links	 between	 entities	 and	 thus	 relies	 on	
the	 linking	 between	 event	 arguments	 as	 a	 proxy	 for	 event	 linking.	 	 We	 chose	 a	

	 8	

precision-oriented	approach,	so	we	have	decided	to	additionally	restrict	our	scope	
to	 only	 named	 entities	 of	 certain	 categories	 (GPE,	 Person,	 Organization).	 	 The	
motivation	here	is	that	without	an	extensive	use	of	context	we	would	not	be	able	to	
resolve	certain	ambiguities,	and	any	noise	in	relation	extraction	or	within-document	
coreference	resolution	could	result	in	incorrect	linking	that	could	be	very	damaging	
to	 the	 hypothesis	 verification	 results	 (e.g.,	 if	 two	 mentions	 of	 army	 are	 merged	
where	in	fact	one	is	Russian	and	one	is	Ukrainian).			
Since	 this	 system	 operates	 within	 state	 TA2,	 within-document	 coreference	 has	
already	taken	place.		We	therefore	had	two	alternatives:	(1)	mapping	individual	KEs	
into	the	TA2	KB	and	then	performing	clustering	across	documents,	using	the	within-
doc	 coref	 groups/clusters	 to	 set	 the	 extent	 parameters	 for	 each	 cluster,	 or	 (2)	
mapping	each	distinct	TA1	coreference	cluster	into	the	TA2	KB	as	a	single	unit	and	
then	performing	cross-document	clustering	using	these	larger	units.		Eventually	we	
chose	the	latter,	for	two	reasons:	the	former	is	more	delicate	and	potentially	might	
introduce	far	more	damaging	results	if	a	widespread	but	erroneous	clusters	were	to	
be	 formed,	 and	with	 the	 former	 it	 is	more	 difficult	 to	 ensure	 that	 no	 recoverable	
document-level	 information	 is	 propagated	 into	 TA2,	 which	would	 contravene	 the	
rules	of	the	evaluation.			

2.8 TA3	Hypotheses	and	Belief	Graph	Processing		
This	 module	 is	 one	 of	 two	 hypothesis	 reasoners	 of	 OPERA.	 	 It	 complements	 the	
KR&R	reasoner	described	in	Section	2.9.	

Plausible	hypotheses	need	to	take	 into	account	the	uncertainties	 in	the	underlying	
knowledge.		To	support	generation,	management	and	evaluation	of	hypotheses,	we	
developed	 Belief	 Graphs	 (BG)—a	 knowledge	 representation	 system	 that	 includes	
and	manages	uncertainties.	 	We	used	BGs	as	a	 complementary	knowledge	base	 in	
OPERA	 in	 all	 three	 stages:	 TA1	 for	 mini-KB	 and	 its	 conditioning	 by	 the	 analysts’	
hypotheses,	TA2	for	coreference	resolution,	and	TA3	for	hypotheses	construction.			
Belief	 graphs	 use	 random	 variables	 to	 represent	 uncertainty.	 	 These	 variables	
mediate	 between	 knowledge	 elements	 and	 their	 uncertain	 attributes.	 	 Many	
relations	imply	probabilistic	dependencies	creating	uncertainties.		For	example,	the	
relation	“parent-child”	implies	a	certain	probabilistic	relation	between	the	age	of	the	
parent	and	 the	age	of	 the	 child.	 	 If	we	know	 the	parent’s	 age	we	can	estimate	 the	
probability	 distribution	 of	 the	 child’s	 age.	 This	 knowledge	 of	 the	 child’s	 age	 is	
uncertain	but	it	is	better	than	no	knowledge.	

The	two	major	steps	in	Belief	Graph	construction	are	evidence	graph	formation	and	
grounding.	

Evidence	graph	construction:	Each	observed	entity,	event,	and	relation	mention	is	
represented	as	an	evidence	knowledge	element	with	some	properties.		For	entities,	
we	consider	only	two	properties:	name	and	entity-type.		Since	events	and	relations	
have	specific	arguments,	we	map	 these	arguments	 to	a	 fixed	set	of	 semantic	 roles	
e.g.,	 Conflict.Attack-Attacker	to	 Agent,	 Conflict.Attack-Target	 to	Patient,	 etc.		

	 9	

Evidence	knowledge	elements	are	 intentional	and	need	 to	be	grounded	 to	specific	
extensional	elements	in	the	KB.	
Grounding:	 Since	 a	 KB	 may	 contain	 millions	 of	 knowledge	 elements,	 we	 use	
heuristics	to	select	a	small	number	of	plausible	candidates	for	the	grounding	of	an	
evidence	 knowledge	 element.	 	 We	 create	 a	 grounding	 variable	 for	 each	 evidence	
element	and	form	a	factor	graph	to	conduct	belief	propagation	which	results	in	the	
posterior	probability	distribution	of	 the	grounding	variable.	 	For	entities,	we	get	a	
set	of	potential	 candidates	by	retrieving	entities	 that	have	 the	same	entity	 type	as	
the	 observed	 entity.	 	 For	 events,	 it	 is	 somewhat	more	 complex	 because	 we	 have	
different	 arguments.	 	 As	 described	 above,	 for	 consistency	 and	 for	 the	 purpose	 of	
tractability	we	map	all	the	event-specific	arguments	to	a	fixed	set	of	semantic	roles.	
In	an	unbiased	scenario,	all	events	receive	uniform	priors.		Belief	propagation	is	run	
over	this	factor	graph	to	find	the	posterior	distribution	of	the	“target”	variable.			

TA1a	 inference:	 We	 run	 the	 procedure	 descried	 above	 for	 each	 document	 to	
generate	 a	 document-specific	 mini	 knowledge	 graph.	 	 The	 inputs	 to	 this	 are	 the	
entity,	 event,	 and	 relation	mentions	 extracted	 by	 the	 TA1	module	 extractors.	 	 To	
this,	the	belief	propagation	module	adds	additional	co-reference.		The	mini-KB	starts	
empty	and	 is	populated	by	knowledge	elements	as	a	 result	of	mention	grounding.		
We	also	assume	a	uniform	prior	distribution	among	grounding	candidates.			

TA1b	inference:	In	this	task,	we	are	given	human	generated	hypotheses	and	we	use	
this	knowledge	to	bias	our	knowledge	base	construction.		We	do	this	by	seeding	the	
mini	KB	with	 the	events,	 entities	 and	 relations	mentioned.	 	We	also	assign	higher	
grounding	priors	to	these	knowledge	elements.		This	biases	the	interpretation	of	the	
document	mentions.		The	remaining	procedure	is	the	same	as	for	TA1a	above.				

TA2	 inference:	We	run	the	same	procedure	as	before,	but	 instead	of	mentions	as	
inputs,	we	use	the	document	level	mini	knowledge	graph	as	the	input.		If	available,	
we	 add	 cross-document	 and	 cross-lingual	 entity	 co-references,	 which	 serve	 as	
anchors	help	reduce	a	potentially	much	 larger	set	of	grounding	candidates.	 	Belief	
propagation	is	then	used	as	before	to	compute	the	marginals.		We	retain	only	a	few	
high-probability	 candidates	 in	 each	 grounding	 variable	 distribution	 relegating	 the	
rest	to	“*other”.		Grounding	helps	identify	likely	cross-document	coref	candidates.			
TA3	 inference:	Given	an	information	need	in	the	form	of	an	incomplete	graph,	we	
retrieve	 the	 relevant	 event	 types	 from	 the	 knowledge	 graph.	 	 We	 match	 our	 KB	
entity	nodes	with	the	entry	points	in	the	information	need	statement.		We	then	use	
these	nodes	to	 include	the	events	and	other	role	 fillers.	 	Usually	this	results	 in	the	
required	 event	 graph.	 	 Since	 all	 knowledge	 element	 attributes	 are	 connected	 via	
random	variables,	we	have	a	natural	way	of	constructing	alternative	hypotheses	and	
evaluating	their	likelihood.	

2.9 TA3	Knowledge	Representation	and	Reasoning	in	PowerLoom		

This	component	developed	a	representation	formalism,	repository,	inference	engine	
and	 APIs	 to	 store,	 access,	map,	 disambiguate	 and	 link	 knowledge	 elements	 (KEs)	
generated	 by	 TA1	modules	 or	 entered	 directly	 by	 analysts.	 	 It	 also	 generates	 and	

	 10	

manages	 semantically	 coherent	 hypotheses	 that	 are	 supported	 to	 some	 minimal	
degree	 by	 evidence	 available	 to	 OPERA,	 and	 records	 and	manages	 alternatives	 to	
enable	backtracking	and	retraction	under	the	Hypothesis	Reasoner.	 	 	(This	module	
includes	 one	 of	 the	 two	 hypothesis	 reasoners	 of	 the	 OPERA	 engine;	 the	 other	 is	
described	in	Section	2.8.)		This	module	is	implemented	in	large	part	in	PowerLoom.		

CSR	representation:	We	developed	a	CSR	representation	and	interchange	language	
for	 the	 OPERA	 team;	 our	 json-LD-based	 OPERA	 interchange	 language	 is	 used	
internally	and	is	translated	into	AIF	(AIDA	Interchange	Format)	as	required,	as	well	
as	Web	hosting	of	context	definitions	to	support	translation	into	RDF.		

Database	 backend	 technologies:	 We	 experimented	 with	 a	 number	 of	 different	
database	backend	technologies	to	support	storage	and	querying	of	very-large-scale	
structured	and	heterogeneous	data,	while	at	 the	same	 time	allowing	sophisticated	
logic-based	 inference	 provided	 by	 our	 PowerLoom	KR&R	 system	 to	 be	 applied	 to	
this	 data.	 	We	decided	 to	use	 a	 triple	 store	 and	 graph	database	 called	Blazegraph	
(www.blazegraph.com).	 	Blazegraph has a number of features that make it well-suited
for our purposes: 	

• RDF/SPARQL and Apache TinkerPop APIs
• Supports 50B edges on a single machine, 1T+ edges scaleout in a cluster
• Used by WikiMedia / WikiData, some commercial clients
• REST API, direct-call Java-based SESAME API
• Can get close to “bare metal” for fast PowerLoom integration
• Fast ingest, lookups, querying
• 2 min to load 7.3M triples, 0.7ms random 2-step lookup on embedded server through

direct-call Java API (using an SSD drive)
• JSON support through JSON-LD to RDF mapping
• Open source, GPLv2
After settling on Blazegraph, we wrote a Python library to support easy interaction,
querying, experimentation and integration with Blazegraph. We also completed an initial
integration with PowerLoom that allows us to transparently map PowerLoom relations
onto complex SPARQL queries that call out to Blazegraph and that transparently
translate results between RDF and PowerLoom representations.

Query	 processing:	We	 developed	 a	 query-to-SPARQL	 converter	 to	 handle	NIST’s	
pre-evaluation	 queries,	 as	 well	 as	 an	 OPERA-json-format-to-AIF-format	 converter	
for	delivery	of	final	evaluation	output	to	NIST.			
The	 pre-evaluation	 in	 September	 highlighted	 numerous	 aspects	 and	 alternative	
inference	paths	that	we	did	not	have	time	to	explore.		One	aspect	is	the	deployment	
of	a	probabilistic	soft	logic	(PSL)	reasoner.		We	have	an	initial	framework	to	export	
entity/event/relation	 hypotheses	 represented	 in	 PowerLoom	 into	 PSL	 and	 then	
apply	probabilistic	PSL	inference	over	them.		To	evaluate	this	we	so	far	have	some	
anecdotal	 results,	 nothing	 yet	 quantitative.	 	 This	 aspect	 appears	 to	 be	 a	 good	
complement	to	the	kind	of	Belief	Graph	reasoning	described	in	Section	2.8.			

	 11	

3 The	Pre-Evaluation	

The	 recent	 pre-evaluation	 (September–October	 2018)	was	 an	 enormous	 effort	 on	
everyone’s	part.		In	summary,	OPERA	submitted	runs	as	follows.		We	uploaded	our	
final	TA1a,	TA1b,	TA2	and	TA3	KBs,	and	query	results	 for	them	all,	 including	TA3.		
We	validated	them	as	much	as	possible	with	NIST's	validator	code.		In	particular	we	

• partially	 validated	 our	TA1	 results	 by	 focusing	 on	 the	 top-20	 largest	 response	
files	from	each	class	and	each	KB	and	successfully	validating	those.		The	problem	
there	is	that	for	single-file	validation,	the	validator	has	a	large	per-file	overhead	
(about	 2.5min	 for	 graph	 query	 responses	 on	 our	 machine),	 which	 makes	 it	
somewhat	prohibitive	to	validate	1000s	of	response	files.		Even	just	focusing	on	
the	core	documents	would	take	a	long	time	for	3	+	5	TA1	KBs.		If	there	is	a	work-
around	for	that,	we'd	be	happy	to	run	validation	again	on	a	larger	scale;		

• fully	validated	all	TA2	results;		
• did	not	 validate	 our	TA3	 results,	 since	 it	 seems	 the	NIST	 validator	 doesn't	 yet	

support	that	and	breaks	on	our	hypothesis	file	names.		

We	 also	 uploaded	 the	 various	 KBs	 in	 our	 own	 OPERA	 json-LD	 format,	 and	 have	
translated	them	into	the	optional	AIF.		

4 References		
Chalupsky,	H.	 	 2018.	 CMU	OPERA	Team	Proposal	 for	AIDA	 Interchange	Language,	
Version	0.3.	July	5,	2018.		

Chang,	X.,	P-Y.	Huang,Y-D.	Shen,	X.	Liang,	Y.	Yang,	and	A.	Hauptmann.	2018.	RCAA:	
Relational	Context-Aware	Agents	for	Person	Search.	Proc.	ECCV	2018.		

Huang,	P-Y.,	X.	Chang,	and	A.	Hauptmann.	2018.	CMU-AML	Submission	to	Moments	
in	Time,	ActivityNet	workshop	at	CVPR	conference.		

Huang,	P-Y.,	J.	Liang,	J-B.	Lamare,	and	A.	Hauptmann	.	2018.	Multimodal	Filtering	of	
Social	Media	for	Temporal	Monitoring	and	Event	Analysis.	Proc.	ICMR	2018.		
Liu,	 Z.,	 C.	 Xiong,	 T.	 Mitamura,	 and	 E.H.	 Hovy.	 2018.	 Automatic	 Event	 Salience	
Identification.	Proc.	EMNLP	2018.	

Liu,	 Z.,	 T.	 Mitamura,	 and	 E.H.	 Hovy.	 2018.	 Graph-Based	 Decoding	 for	 Event	
Sequencing	 and	 Coreference	 Resolution.	 Proceedings	 of	 the	 27th	 International	
Conference	on	Computational	Linguistics	COLING.		
Ma,	X.	and	E.H.	Hovy.	2016.	End-to-end	Sequence	Labeling	via	Bi-directional	LSTM-
CNNs-CRF.	Proc.	ACL	conference.	Berlin,	Germany.	

Ma,	X.,	Z.	Hu,	J.	Liu,	N.	Peng,	G.	Neubig	and	E.H.	Hovy.	2018.	Stack-Pointer	Networks	
for	Dependency	Parsing.		Proc.	ACL	conference	2018.	

Palaskar,	 S.,	 R.	 Sanabria,	 and	 F.	 Metze.	 2018.	 End-to-End	 Multimodal	 Speech	
Recognition.	Proc.	ICASSP	2018.	IEEE.	
Xiong,	C.,	Z.	Liu,	J.	Callan,	and	TY.	Liu.	2018.	Towards	Better	Text	Understanding	and	
Retrieval	through	Kernel	Entity	Salience	Modeling.	Proc.	SIGIR	2018.		

