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Abstract 

This report describes the performance of 
various named entity recognition methods 
for extraction of data elements for 
systematic review in the TAC SRIE 2018 
challenge. The approach uses a 
combination of conditional random fields 
and recurrent neural nets with multi-task 
learning and achieved 49.76% overall F1-
score on the test dataset. Our system was 
placed second in the challenge. We also 
demonstrate the efficacy of sentence 
classification as an alternative way to aid 
manual extraction from scientific text. 

1 Introduction 

Biomedical text is one of the most widely studied 
application domains in information extraction. 
Years of ongoing research has led to the 
development of effective, scalable techniques for 
critical tasks like gene and protein entity 
recognition (Settles, 2005), adverse drug event 
detection (Sarker and Gonzalez, 2015), protein 
interaction (He et al., 2009), etc. Much of the 
research impetus for these efforts is provided by 
the release of publicly available corpuses like 
BioCreative tasks (Dogan et al., 2017; Hirschman 
et al., 2005; Li et al., 2016), TAC ADE (Demner-
Fushman et al., 2018), GENIA (Kim et al., 2003) 
and i2b2 (Uzuner and Stubbs, 2015) among 
others. Tools developed using these methods and 
datasets are extensively used by scientists to aid 
literature review processes and expedite retrieval 
of structured knowledge.  

Systematic review is one such intensive process 
of collection, analysis and summarization of 
empirical evidence that is used to reliably answer 
a given research question. A critical and time-
consuming process that must occur during 
systematic review is the extraction of relevant 
qualitative and quantitative raw data from the free 

text of scientific documents. The resulting data is 
used to answer the review’s research question(s) 
and as inputs to various forms of meta-analysis. 
The specific data types extracted differ among 
disciplines, but within a given scientific domain, 
certain data points are extracted repeatedly for 
each new review that is conducted. Given the 
extremely laborious, time intensive, and repetitive 
nature of this data extraction step, systematic 
review practitioners have long been interested in 
the possibility of automated or semi-automated 
information extraction from scientific documents. 
Except for a few tasks on PICO elements (Kim et 
al., 2011; Nye et al., 2018), information extraction 
for systematic reviews has remained largely 
unexplored due to the lack of datasets. For this 
reason, organizers from NIEHS and EPA released 
an annotated corpus and held the TAC SRIE 2018 
information extraction challenge to assess and 
advance the state-of-the art for information 
extraction in the context of systematic review. 

This report summarizes our contributions to the 
challenge and the methods we have evaluated for 
extraction of SRIE Task entities. 

2 Dataset 

The TAC SRIE training dataset consists of 100 
annotated ‘Materials and Methods’ sections from 
research articles. The dataset is annotated with 24 
entity classes, which are further grouped into 4 
major categories: Exposure, Animal Group, Dose 
Group and Endpoint. There are 8,353 sentences 
and the average sentence length is 24. Besides 
multiple paragraphs, the ‘Materials and Methods’ 
sections also contain sub-headings which are 
delineated using newline characters.  The most 
frequently occurring entity classes are Endpoint, 
TestArticle, Species and GroupName with 6,533, 
1,961, 1,624 and 1,119 entities respectively (see 
Table A1 in the Appendix.) The least frequently 

A Pragmatic Approach to Information Extraction for Systematic Review 
 
 
 

Adyasha Maharana, Arpit Tandon, Eric Wimberley, Mihir Shah,  
Ruchir Shah, Brian E. Howard 

Sciome LLC 
{adyasha.maharana,arpit.tandon,charles.wimberley,mihir.shah, 

ruchir.shah,brian.howard}@sciome.com 
 
 



 
 

2 
 

occurring entity classes are TestArticleVerification, 
TestArticlePurity, TimeAtLastDose, 
TimeAtFirstDose, CellLine and SampleSize, each 
with an average count of <1 per document. There 
are a significant number of occurrences of inter-
class as well as intra-class overlap in annotations. 
In addition, nearly 14.3% of the 15,267 entities 
span over discontinuous fragments of tokens 
within the document. 

3 Methods  

Due to the varying frequencies of the diverse 
entity categories in our dataset, we adopted 
different approaches for different entities 
contingent on the amount of labeled data available. 
For high-frequency entity classes like Endpoint 
and TestArticle, we experimented with deep-
learning based named entity recognition methods. 
Deep Learning based methods are known to 
generalize better for biomedical text (Wu et al., 
2017; Maharana and Yetisgen, 2017; Sachan et al., 
2017). For entity classes having an intermediate 
amount of training data, we used Conditional 
Random Fields (CRFs) (Lafferty and Mccallum, 
2001). Lastly, for those entity classes having only 
a small number of labeled training instances, we 
used rules and regular expressions. See Table 2 in 
the Appendix for a complete breakdown of the 
methods employed for each Task I entity class.  

Several entity classes are closely related to one 
another in terms of semantics, relative position 
within the text, and shared, overlapping words. 
Some of these similarities can be leveraged to build 
models that jointly predict more than one category. 
To better understand these similarities, we 
computed co-occurrence counts for each entity 
class with respect to all other entity classes. Some 
of the conclusions that stood out from this analysis 
were:  

• Nearly 80% of Strain and 50% of Sex 
entities co-occur with Species entities 
within the same sentence.  

• Dose and DoseDuration entities are 
almost always accompanied by their 
respective DoseUnits and 
DoseDurationUnits entities. 
DoseFrequency co-occurs with 27.8% of 
the DoseDuration entities. 

• DoseRoute entities co-occur with nearly 
half of the Dose entities and only a 
quarter of TestArticle entities. 

• A third of EndpointUnitOfMeasure 
entities have overlapping spans with 
Endpoint entities. 

We used some of these insights to group entity 
classes together in joint prediction models. 

3.1 Preprocessing 

The documents in the training set were separated 
into individual sentences using the Punkt Sentence 
Tokenizer. These tokenized sentences were then 
passed through the GENIA tagger (Tsuruoka et al., 
2005) to augment the given text with a 
comprehensive output containing tokenized words 
and their respective lemmas, part-of-speech (POS) 
tags, chunk tags and GENIA named-entity tags 
(Protein, DNA, RNA, Cell Line and Cell Type). 
These entity annotations were then converted into 
the BIO (Begin-, Inside-, Outside-Entity) format 
for downstream processing. Those entities which 
consist of discontinuous spans were broken into 
individual continuous entities for the sake of 
modelling. 

3.2 Deep Learning for Named Entity 
Recognition 

Recurrent Neural Networks (RNN) are considered 
state-of-art algorithms for most NLP tasks, though 
they have been outperformed on some tasks by 
recent Transformer architectures (Vaswani et al., 
2017). In order to realize these performance gains, 
RNN-based models must be initialized with pre-
trained word embeddings and then trained using a 
sizable task-specific dataset. They are also often 
augmented with a sequence optimization layer for 
sequence labelling tasks like named entity 
recognition and part-of-speech tagging. Recent 
developments in Natural Language Processing 
have shown that pre-trained language models can 
be used with task-specific RNNs to further 
improve performance via transfer learning 
(Howard and Ruder, 2018). 

3.3 Embeddings 

To initialize our deep learning models, we used 
pre-trained biomedical word2vec word 
embeddings (dimension = 200) extracted from the 
PubMed and PMC databases, encompassing in 
total over five billion words (Pyysalo et al., 2012). 
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3.4 Bidirectional RNN with Sequence 
Optimization 

The NER architecture introduced in (Lample et al.,  
) has been established as a strong baseline for 
several open-domain and biomedical entity 
recognition datasets. It consists of five components 
– a character embedding layer, a bidirectional 
character LSTM, a word embedding layer, a 
bidirectional word LSTM, and an integrated 
probabilistic CRF model. It is trained end-to-end 
by optimizing the negative log-likelihood loss 
between predicted and target labels. We used this 
BiLSTM-CRF architecture as a baseline for our 
experiments with Endpoint, TestArticle and 
DoseGroup entity classes. 

3.5 Multi-task Sequence Labelling Models 

Multi-task learning is a well-known technique used 
in machine learning to improve generalization of 
models by sharing representation with one or more 
related tasks (Caruana, 1997). In simpler words, 
the model is forced to first learn easy tasks and then 
use those skills to master more complex tasks. 
Usually, this involves optimizing more than one 
loss function simultaneously while training the 
model. We have experimented with two auxiliary 
tasks (in addition to entity recognition) in the 
multi-task setting – language modelling and 
sentence classification. 
 
NER + Character-level language model (LM-
LSTM-CRF): We used the task-aware neural 
language model proposed in Liu et al. (2017) to 
jointly train a character-level language model and 
an entity recognizer. Character representations 
from bi-directional LSTM layers were mapped 
onto two different semantic spaces via residual 
layers for language modelling and sequence 
labelling. The language modelling objective was 
combined with the NER objective using a learnable 
weight parameter. 
 
NER + Sentence Classification (S-LSTM-CRF): 
The final word representation from the bi-
directional LSTM layer in a BiLSTM-CRF model 
was mapped onto a different semantic space using 
a fully-connected layer and passed into a soft-max 
layer for binary sentence level classification. 
Sentences are classified into ‘contains one or more 
entities’ or ‘doesn’t contain any entity’ category; 
the entity class depends on the target NER task. 
The binary cross-entropy classification objective is 

combined with negative log-likelihood objective 
using a fixed weight parameter. 

3.6 Training and Hyper-parameters 

In general, the NER datasets for individual 
categories were very unbalanced – i.e. the number 
of sentences containing no entity (zero-entity 
sentences) is at least three times the number of 
sentences which have an entity. For example, only 
2,353 sentences feature an Endpoint entity out of 
8,353 sentences in the training dataset. The number 
drops even lower to 1,278 and 535 for TestArticle 
and GroupName, respectively. To counter the 
unbalanced-ness, we adopt undersampling of zero-
entity sentences during training. For every training 
epoch, a new, randomly picked subset of zero-
entity sentences was used for training while the rest 
were discarded. This ensures that the model gets to 
see all data points during training. 

Due to time constraints, we did not perform 
extensive hyperparameter optimization for deep 
learning architectures. Apart from a few changes, 
we have used the recommended settings for 
BiLSTM-CRF and LM-LSTM-CRF networks 
(Lample et al., 2016; Liu et al., 2017). The 
dimensions for character LSTM and word LSTM 
representations are 50 and 200 respectively. 
Dropout rate of 0.5 was applied on word and 

Features in Conditional Random Field Model 
• Word (n-grams) 
• Boolean feature for 

title case 
• POS tag (Genia) 
• Lowercase of word 
• Boolean feature for 

numeric characters 
• Chunk tag (Genia) 

• Lemma (Genia) 
• Character n-grams 

(prefix and suffixes) 
• Length of word 
• Word shape (X, x, 0, 

special-char) 
• Boolean feature for 

uppercase 

Table 1: Common features in Conditional Random 
Field models for SRIE dataset 

 

 Target Entities Additional features 

Strain, GroupSize, 
SampleSize, 
GroupName 

Output from CellLine, 
Strain, Sex and Species 
regular expression models 
were used as features 

EndpointUnitOfMeasure Endpoint entities were 
used as features 

TimeUnits Augmented with lexicon 
of common time units 

Table 2: List of CRF models and their respective 
target entities 
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character embedding layers during training. We 
also experimented with the usage of POS tags and 
chunk tags as feature embeddings, however this 
did not lead to any significant improvement in 
performance. The Stochastic Gradient Descent 
(SGD) algorithm was used for training the 
networks and the learning rate was fixed after 
optimization via cross-validation experiments. 

3.7 Rules & Regular Expression Models 

For the Sex, Species, Strain, Vehicle, and CellLine 
entity classes, we developed models based on 
dictionaries, regular-expression rules and GENIA 
tags. Orthographic structure of the words and word 
position relative to other entity categories were the 
most important cues for identifying CellLine and 
Strain entities, and these are therefore incorporated 
into the various rule-based models created for this 
task. 

3.8 Conditional Random Fields 

We used conditional random fields (CRFs) to 
build models for those entity classes having less 
than 1,000 available data points in the training set, 
since neural networks are prone to overfitting with 
smaller datasets. All CRF models have a common 
set of basic features, and additional entity-specific 
features and hyperparameters. The window size for 
word and character n-gram features for all CRF 
models varies between 3-5. The set of basic textual 
features used in all CRF models can be found in 
Table 1.  

In addition to feature engineering, we also 
adopted under-sampling of zero-entity sentences, 
joint modelling of entities (Table 2) and cascading 
with regular expression models to improve 
performance for certain entities. We used co-
occurrence counts to group entities together that 
might benefit from joint prediction. For 
EndpointUnitOfMeasure, we also performed 
propagation of tagged entities throughout the 
document text. 

3.9 Ensembling 

To evaluate each of our statistical models, we use 
five-fold cross-validation: i.e. we built five 
separate models, trained and tested on different 
partitions of the training dataset. To get results for 
the TAC SRIE evaluation dataset, we ran each of 
the five models on the evaluation corpus and 
merged results using a voting-based ensemble. 

3.10 Document Level Models 

There are multiple cross-sentence dependencies 
between pairs of entity classes such as Endpoint 
and EndpointUnitOfMeasure, TestArticle and 
Vehicle, etc. Even within the same category, a 
statistical model can benefit from using the entire 
document as context for named entity recognition 
within a single sentence. To this end, we attempted 
to build a document-level CRF model that takes 
tagged entities from existing models and uses 
features from the entire document to re-tag entities 
within each sentence. However, we did not see any 
improvement in performance using this model, and 
therefore did not include this model in our 
submission. In future work, we will experiment 
with other methods for using the document as 
context. 

3.11 Sentence Classification 

We were curious if courser-grained, sentence-level 
annotations might result in potentially useful 
models for extraction. We trained sentence 
classifiers for the four major tag types, as defined 
in the SRIE Annotation Guidelines: Exposure, 
Animal Group, Dose Group and End Point.  Each 
sentence was annotated as a positive example of 
the class if it contained an annotation for one of the 
corresponding sub-tags (e.g. “TestArticle” or 
“Vehicle” for the Exposure tag). We evaluated 
several approaches including traditional classifiers 
(logistic regression, SVM, random forest and naïve 
Bayes) based on bag-of-words, topic model and/or 
vector-embeddings feature sets.  We also tested 
several artificial neural network architectures 
including several varieties of LSTM classifier 
models, including the multi-task ULMFit model 
from fast.ai. The ULMFit model uses a language 
model pretrained on a large text corpus to 
implement transfer learning in the context of text-
classification (Howard and Ruder, 2018). 
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4 Results 

4.1 Named Entity Recognition 

We submitted models for 19 out of the 24 entity 
categories in Task 1 of the SRIE dataset.  Table A2 
contains the full set of results for each of these 
models on both the training and test datasets. 

For Endpoint, we had results from three 
separate models: BiLSTM-CRF, LM-LSTM-CRF 
and S-LSTM-CRF. The best F1-score was obtained 
from the LM-LSTM-CRF multi-task model. 
However, none of the multi-task models could 
improve on the recall score of the baseline LSTM-
CRF. The S-LSTM-CRF model had the best 
precision score. The complementary strengths of 
these three models could be potentially combined 
through stacked ensembling methods for a better 
performing Endpoint model. A similar trend in 
performance was also observed in the evaluation 
set, however, there was a nearly 10% absolute drop 
in the best performing model’s F1-score. 

We experimented with all the above deep 
learning architectures for predicting entity tags for 
TestArticle and with different undersampling rates. 
We also used the off-the-shelf ChemNER model to 
find chemical entities and feed them as input to the 
models as feature embedding. The baseline, 
BiLSTM-CRF, remained the best performing 
model for TestArticle despite several modifications 
in feature set and architecture. However, the 
performance suffered a sharp drop in the 
evaluation set, suggesting that the data distribution 

of TestArticle entities in evaluation set varies 
significantly from that of training set. 

Among other noteworthy results, the F1-score 
of the DoseFrequency model increased by 10% for 
the evaluation set. The performance scores on 
training and evaluation data for rest of the 
DoseGroup entity classes were similar, except for 
Dose and DoseUnits. The CRF model for 
EndpointUnitOfMeasure depends on accurate 
input of Endpoint entities. Therefore, it isn’t 
surprising to see that it also fares worse on the 
evaluation set. Most of the regular 
expression/rules/lexicon-based models performed 
worse on the evaluation set. In this case, the drop 
in performance could be attributed to overfitting by 
rules and limited lexicon coverage 

4.2 Sentence Classification 

The best performing model for the sentence 
classification task was the ULMFit model from 
fast.ai. The following table shows the results of 5-
fold cross validation on the training dataset. 

With respect to the other neural network models, 
the best performing model was the bi-directional 
LSTM with character level extraction, dropout for 
embeddings only, automatic learning rate 
adjustment, and use of “UNK” to replace rare 
words. F1-Scores for this approach were 3-5% 
lower for each tag (data not shown). Among the 
traditional machine learning classifiers, logistic 
regression with tf-idf weighted bag-of-words 
features provided the best performance.  

5 Discussion & Conclusion 

From our experiments, we can conclude that 
multi-task learning is beneficial for improving 
performance of Named Entity Recognition models 
on biomedical datasets. However, the auxiliary 
task needs to be carefully chosen to optimize for 
sensitivity or specificity. On this dataset, addition 
of a language modelling objective lead to 
optimization for both recall and precision, while 
the binary sentence classification objective 
optimized mostly for precision. 

One of the possibilities that remained 
unexplored in our experiments is the use of better 
word embeddings to initialize the recurrent neural 
network architectures. Several NLP tasks have 
received substantial boost in performance from 
using deep contextualized word representations, 

Endpoint 
Model 

Data Recall Precision F1 

LSTM-CRF 
(baseline) 

Train 0.744 0.448 0.559 
Test 0.643 0.365 0.465 

LM-LSTM-
CRF 

Train 0.721 0.552 0.625 
Test 0.599 0.476 0.531 

S-LSTM-CRF Train 0.586 0.612 0.599 
Test 0.534 0.478 0.505 

Table 3: Comparative Analysis of various Endpoint 
models on SRIE training and evaluation corpus 

 
Endpoint 
Model 

Data Recall Precision F1 

LSTM-CRF 
(baseline) 

Train 0.744 0.448 0.559 
Test 0.643 0.365 0.465 

Table 4: Comparative Analysis of TestArticle model 
on SRIE training and evaluation corpus 
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better known as ELMo embeddings . Initializing 
our multi-tasking networks with ELMo 
embeddings could lead to further improvement in 
tagging of Endpoint and TestArticle entities. More 
recently, Transformers, which are non-recurrence 
neural networks that depend solely on an attention 
mechanism, have outperformed state-of-the-art 
architectures in several NLP tasks. Bi-directional 
Transformers (BERT) can be fine-tuned to target 
tasks after being pre-trained on a large open 
domain corpus (Devlin et al., 2018). However, 
these are data-hungry networks and we run the risk 
of severely overfitting them on a corpus as small as 
the SRIE dataset. With the availability of more 
training data, it will become increasingly possible 
to leverage advanced deep learning methods. 

Named Entity Recognition has been 
traditionally performed at the sentence level. For 
the most part, this works fine for open-domain 
datasets because entities like Person, Location, and 
Organization do not need contextual information 
from other parts of the document. The SRIE entity 
recognition dataset differs in this regard since 
tagging of TestArticle, Endpoint etc., in one part of 
the text is informed by cues from several other 
parts of the text. For example, AuNP is a test article 
entity in the sentence “AuNP aerosol generation 
and inhalation were performed as previously 
described for titanium dioxide NP [27] and gold NP 
[28]”, but it wouldn’t be immediately clear to the 
reader without context from a previous sentence, 
“we studied (i) AuNP distribution in lung tissue 
and (ii) AuNP uptake by surface macrophages, at 
the individual particle level”. If annotators had to 
tag the SRIE dataset by looking at only one 
sentence at a time, the resulting annotations might 
not cover more than 60-70% of the annotations 
currently present in the dataset. Statistical methods 
will quickly hit this upper cap even with the use of 
more sophisticated embeddings and NER 
architectures. We attempted to solve this problem 
by a) propagating all predicted TestArticle entities 
throughout the text and b) propagating only high 
confidence TestArticle entities. The corresponding 

sentence classification score is used as a 
confidence score for this analysis. We observed up 
to 1.5% improvement in F-score using this method 
(Table 6). Observed gains are also likely reduced 
by spurious False Positives, caused by inconsistent 
annotations in the dataset. Nevertheless, the gains 
aren’t large enough to push model performance to 
the level of humans. The bottleneck still lies in 
framing of this task at the level of the sentence. We 
propose to reframe this task as a document level 
sequence labelling task so as to allow the model to 
leverage information from elsewhere in the text. To 
this end, we engineered document-level features 
for a CRF model that makes predictions for a 
sentence, but we have not yet been successful. 
However, this approach holds promise and there is 
much to be explored in terms of methods to make 
this approach feasible (Luo et al., 2018). 

 
  TP FP FN F1 
Baseline 1017 928 857 53.26 
Score Threshold 
= 2.00 

1157 1235 717 54.23 

Score Threshold 
= 2.50 

1158 1199 716 54.74 

Score Threshold 
= 2.75 

1138 1172 736 54.40 

Score Threshold 
= 3.00 

1127 1149 747 54.31 

Table 6: Performance after propagation of predicted 
TestArticle entities at different thresholds 

 
The results shown in Table 5 suggest that 

annotations performed at the sentence level may 
exhibit improved performance over the finer-
grained entities required by the challenge.  For 
example, our best model was able to identify 
Endpoint-related sentences (including sentences 
tagged with the Endpoint, 
EndpointUnitOfMeasure, and/or 
TimeEndpointAssessed entities) with an F1 score 
of .809 (using cross-validation on the training 
data), as compared to an F1 score of .599 for the 
Endpoint entity.  This is to be expected since 
sentence-level classification does not require exact 
detection of entity boundaries and has the 
advantage of pooling training data across multiple 
similar categories. Nevertheless, in a practical data 
extraction scenario, sentence-level methods (and 
other approximate extraction tasks), especially 
when incorporated into user-friendly software 
applications, may still be useful for implementing 
computer-assisted extraction applications in a 

Label Accuracy Recall Precision F1 
AnimalGroup  0.969 0.926 0.938 0.932 
DoseGroup 0.938 0.647 0.851 0.735 
Endpoint 0.885 0.805 0.813 0.809 
Exposure 0.926 0.754 0.834 0.792 

Table 5: Sentence classification performance 
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semi-automated way.  On the other hand, at this 
time, completely automated data extraction is most 
likely not feasible for all possible entities. 

6 Conclusion 

Although much work remains to be done to 
successfully integrate automated or semi-
automated data extraction into a typical Systematic 
Review workflow, the 2018 SRIE TAC is a bold 
step in the right direction. Furthermore, Sciome is 
committed to working with the community to 
translate and integrate the latest information 
extraction models and methods into a practical, 
extensible data extraction platform that will 
continue to improve along with the rapidly 
advancing state-of-the-art. 
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A Appendices 

 
Entity Class No. of 

Mentions 
in 

Training 
Set 

No. of 
Mentions 
in Test Set 

Exposure 
TestArticle 1961 2312 

Vehicle 446 371 

TestArticlePurity 28 19 
TestArticleVerification 7 2 

Animal Group 
GroupName 1119 1225 

GroupSize 394 503 

SampleSize 45 74 

Species 1624 1639 

Strain 379 355 

Sex 612 608 

CellLine 40 110 

Dose Group 

Dose 660 611 

DoseUnits 498 444 

DoseFrequency 101 106 

DoseDuration 217 190 

DoseDurationUnits 204 177 

DoseRoute 589 543 

TimeAtDose 133 61 

TimeUnits 614 754 

TimeAtFirstDose 53 73 
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TimeAtLastDose 23 46 

Endpoint 

Endpoint 6533 5637 

EndpointUnitOfMeasure 727 716 

TimeEndpointAssessed 751 993 

Table A1: Occurrence counts of all entity classes for 
SRIE training and evaluation corpus 

 
 

Entity Class Model Type F-
Score 
(T) 

F-
Score 
(E) 

Sex Rules/Regex 0.94 0.76 

Species Rules/Regex 0.95 0.81 

Vehicle Rules/Regex 0.56 0.34 

CellLine Rules/Regex 0.75 0.45 

TimeAtDose Rules/Regex 0.36 0.11 

Strain Rules/Regex 0.66 -- 

CRF 0.74 0.55 

GroupName CRF 0.62 -- 

GroupSize CRF 0.71 0.62 

SampleSize CRF 0.31 0.27 

EndpointUnit
OfMeasure 

CRF 0.40 0.24 

TimeUnits CRF 0.62 0.47 

Endpoint LSTM-CRF 0.56 0.46 

 LM-LSTM-
CRF 

0.63 0.53 

 S-LSTM-
CRF 

0.60 0.50 

TestArticle LSTM-CRF 0.56 0.38 

Dose LSTM-CRF 0.70 0.55 

DoseUnits LSTM-CRF 0.72 0.51 

DoseDuration LSTM-CRF 0.47 0.46 

DoseDuration
Units 

LSTM-CRF 0.48 0.46 

Dose 
Frequency 

LSTM-CRF 0.42 0.51 

DoseRoute LSTM-CRF 0.63 0.62 

Table A2: Comparative analysis of F-Scores for SRIE 
training and evaluation corpus 
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