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1 Introduction

As an event unfolds, such as a crime, natural disaster, or conflict, it is often initially unclear what hap-
pened. Information is spread over many sources in different modalities and languages, and is often
conflicting. For example, when flight MH-17 crashed in Ukraine in 2014, there were initially many the-
ories of what happened, including a missile strike initiated by Russia-affiliated militants, a missile strike
by the Ukrainian military, and a terrorist attack.

Streaming Multimedia Knowledge Base Population (SM-KBP) is a new track at TAC 2018 that ad-
dresses this scenario through multiple tasks. Task 1 is about the extraction of information from multi-
modal and multi-lingual sources. Task 2 combines document-level knowledge graphs into a single multi-
document knowledge graph and performs cross-document coreference. The resulting knowledge graph
will contain incompatible narratives on what happened. Task 3 constructs “hypotheses”, internally con-
sistent narratives, out of the overall incompatible knowledge base. Task 3 can thus be viewed as a “worst
case” of multi-document summarization (Christensen et al., 2013; Wities et al., 2017) in which the doc-
uments tell incompatible stories.

The UTexas team participated in Task 3, hypothesis generation. We view hypothesis generation as a
clustering task based on narrative coherence (Wang et al., 2018). However, it is not a standard clustering
task, but clustering combined with inference, where the inference incorporates background knowledge
on the compatibility or incompatibility of knowledge subgraphs. The UTexas system for TAC 2018 uses
probabilistic programming (Goodman and Stuhlmüller, 2014) to implement a probabilistic generative
process that selects connected and compatible subgraphs.

2 The Hypothesis Generation Task

The input to SM-KBP task 3, hypothesis generation, was a knowledge graph generated by task 2. This
graph was given in AIDA Interchange Format (AIF), an RDF representation of the knowledge graph in
turtle format.

AIF nodes characterize entities, events, and relations – that is, events as well as relations are reified.
AIF statements describe the types of entities, events and relations, as well as links between them. The la-
bels used in these statements are specified in the AIDA Seedling Ontology. Coreference between entities,
between events, or between relations is also described in the knowledge graph. SameAsCluster nodes
introduce coreference groups, and membership in a coreference group is stated by a ClusterMembership
statement. All statements, including coreference statements come with confidence weights.

The hypotheses to be generated are characterized through Statements of Information Need. Such a
Statement includes entities, events, or relations to be included in the hypothesis, called entry points. As
the underlying data is multimodal, an entry point may be characterized through text (for example, an
entity’s name), an image, or a piece of a video. Additionally, a Statement of Information Need specifies
frames: different takes on a situation. Returning again to the MH-17 example, a single entry point
describing flight MH-17 may be mentioned in two frames, one that states that the event was an accident,
the other stating that it was an attack. Each frame is given in the form of labeled edges. A third important
piece of information in the Statement of Information Need is a number of hops, which specifies how far



in the graph to go from the entry points to find possible members of a hypothesis. By NIST’s definition
of hops, two coreferent nodes are zero-hop neighbors; two nodes connected by a role edge are a half-hop
apart, and all other statements (such as type statements) count for one hop.

Task 3 of SM-KBP had two parts. The first subtask was to generate subgraphs that meet a given
Statement of Information Need, selecting only from the nodes of the knowledge graph that are at most
the given number of hops away from an entry point. The second subtask was to execute queries over
the constructed hypothesis subgraphs. Queries ask about particular knowledge elements in the given
subgraph.

Incompatibility between hypotheses is introduced through incompatible statements – for example,
both Russia-affiliated militants and the Ukrainian military may be stated as Agents of an event of type
Conflict.Attack. As mentioned above, we view hypothesis generation as a clustering task. As
hypotheses need to differ in the statements they include, the elements that we cluster are AIF statements.

3 The UTexas system

3.1 Probabilistic hypothesis generation using probabilistic programming

Outline. We view hypothesis generation as a clustering task (Wang et al., 2018), 1 or more specifically,
an instance of one-class clustering (Crammer and Chechik, 2004; Gupta and Ghosh, 2005; Bekkerman
and Crammer, 2008). In one-class clustering, as in one-class classification, we have only one class of
interest; all other datapoints are considered outliers. The difference between one-class classification
and one-class clustering is that while one-class classification assumes that outliers are rare, one-class
clustering aims to extract a subset of closely linked relevant datapoints in a space with many outliers. In
our case, the cluster we aim to extract is a hypothesis.

We generate a hypothesis through a probabilistic generative process. The process starts from an initial
cluster from entry points as identified in a Statement of Information Need. We then use a particle filter
or sequential Monte Carlo method to repeatedly sample statements to add to the cluster, based on their
degree of coherence with the cluster generated so far. After each extension of the cluster, we check
for coherence through hard and soft logical rules. We implement this probabilistic generative process
in the probabilistic programming language WebPPL (Goodman and Stuhlmüller, 2014). Each sample
generated in this way constitutes a hypothesis. We keep the n samples with the highest probability and
return them as the system-generated hypotheses.

After this outline of the process, we now describe more details.

Statement sampling. The one-class cluster that is built by the generative process consists of state-
ments. A statement is considered as a candidate for extending the cluster only if it mentions an entity,
event, or relation that is already mentioned in the cluster. This ensures that the generated hypothesis is a
connected subgraph. At the beginning of cluster generation, the process samples a random frame from
the Statement of Information Need. Then cluster generation proceeds in two stages. The first stage seeks
to satisfy the edges specified in the frame: For each frame edge, a random candidate statement is sampled
from all the statements that would satisfy the edge, and consistency is checked using logical rules.

The second stage adds statements not specified in the frame. In this stage, cluster membership of
a sampled statement is determined probabilistically based on a fuzzy boundary on coherence with the
cluster. For each candidate statement, the fuzzy boundary is sampled from a gamma distribution (whose
shape and scale are hyperparameters of the model). If the coherence of the candidate statement to the
current cluster exceeds the boundary, it is added to the cluster, and again consistency is checked using
logical rules. In the current model, we use random walk proximity within the knowledge graph as the
measure of coherence.

Coreference. We model coreference grouping as probabilistic unification, where an entity, event, or
relation e is unified with the prototype member of a coreference group g with a probability that depends

1In the AIDA Interchange Format, the term “cluster” is used to refer to groups of coreferent entities. Here and in the
following, we use the term “clustering” to refer to a method for hypothesis generation, and refer to coreferent entities as a
“coreference group”.



on the coreference confidence of e and g as stated in the knowledge graph.

Logical rules. Hard and soft logical rules can be specified as hard and soft sampling constraints in
WebPPL. A hard constraint, if violated, causes a sample to be rejected. The weight of a soft constraint
is added to the log probability of the sample. (1) shows an example of a hard constraint, specified as a
condition. This constraint states that a node cannot have two conflicting types: If the subjects of two
type statements are the same modulo coreference, then the objects have to be coreferent too.

condition( !unifEqual(typestmt1.subject, typestmt2.subject) ||
unifEqual(typestmt1.object, typestmt2.object))

(1)

(2) is an example of a soft constraint, specified as a factor. For predicates that should be unique in
their objects, such as Conflict.Attack Agent, a sample takes a penalty of −weight if it has two
such statements with the same subject and different objects.

factor( !uniquePred(stmt1.predicate) ||
stmt1.predicate! = stmt2.predicate ||
!unifEqual(stmt1.subject, stmt2.subject) ||
unifEqual(stmt1.object, stmt2.object)
? 0 : − weight)

(2)

This mechanism is closely related to Markov Logic Networks (Richardson and Domingos, 2006).
When we view a sample as a truth assignment or possible world, a soft constraint specifies a bonus given
to that assignment when the constraint is satisfied.

3.2 The UTexas pipeline

The input to our system is provided by a task 2 output. We used the output from the Colorado Ramfis
team, which in turn was constructed from the task 1 output of the GAIA team.

Our system consists of the following components. Components 1-3 are preprocessing steps, compo-
nent 4 does the actual hypothesis generation, and components 5-7 perform postprocessing.

1. Statement of Information Need processing. We use Apache Jena to query and manipulate the
knowledge graph. In this first preprocessing step, the input knowledge graph is loaded into a TDB
database, the whole-graph TDB. Given a Statement of Information Need, we use SPARQL queries to
extract the best match for each entry point. This step may induce additional coreference statements: If a
frame states that an entry point should participate in an edge labeled η but the best match e for that entry
point does not participate in any edge labeled η, we unify e with the best matching node with an η edge.

2. k-hop subgraph extraction. We use a Python script to identify zero-hop, half-hop, and one-hop
neighbors of each node. This is feasible because we first break up the very large input .ttl file into
smaller files of manageable size. Also, the neighbor identification process is linear with respect to the
number of nodes in the graph.

Using the best entry point matches determined during Statement of Information Need processing, we
generate SPARQL query rules that we use on the whole-graph TDB to extract all nodes that are up to k
hops away form an entry point. The result is a second TDB, the subgraph TDB. We also transform the
subgraph into a json format for input to WebPPL.

3. Coreference reduction. We use a Python script to perform probabilistic unification for coreference.
This step operates on the json version of the subgraph. This step can be performed multiple times
to obtain multiple coreference samples; in the current evaluation, we only performed this step once
for each subgraph. The probabilistic unification yields a partition of all entities, events, and relations
into coreference equivalence classes. We rewrite the subgraph modulo coreference equivalence, which
drastically reduces the size of the subgraph.



4. Hypothesis generation. To estimate the shape and scale of the gamma distribution for the fuzzy
threshold, we observe neighbor proximity in the subgraph for some sampled connections, and set shape
and scale such that the mean of the gamma distribution isc lose to the mean observed neighbor proximity.

Then we run the WebPPL module for probabilistic cluster generation, and retain the n samples with
the highest probability as the generated clusters.

5. Coreference expansion. We re-write the output of the WebPPL module to transform nodes that are
coreference equivalence classes back to the original entities, events, and relations, with the appropriate
coreference statements to link them. The output of this step is a re-expanded hypothesis graph in json
format.

6. Output format generation. For each hypothesis, we formulate a set of SPARQL update rules to
create a modified version of the subgraph TDB that omits all triples that are not in the hypothesis, and
that includes an aida:Hypothesis wrapper. The resulting subgraph is written to a ttl file.

7. Query execution. We use a tool from the Colorado Ramfis team to apply the NIST-provided queries
to the hypothesis subgraphs that we construct. This tool applies SPARQL queries to TDB objects.

3.3 System retooling during the evaluation period
At roughly 34G, the input file that we obtained was substantially larger than the data that we had pre-
viously worked with. The Statements of Information Need were also substantially larger than examples
seen before. As a result, we needed to modify all parts of our system.

Before the evaluation period, our pipeline used Python for all steps of the pre- and postprocessing.
This turned out not to be feasible with the evaluation data, so we switched several components to using
Apache Jena. We also added the k-hop subgraph extraction step to reduce the amount of data handed to
downstream components.

The probabilistic unification for coreference handling was originally included in the core WebPPL
module. However, during the evaluation we found that WebPPL was too slow when working on sub-
graphs that were not coreference-reduced. So we re-implemented coreference handling in a separate
Python module, which again considerably reduced the size of the subgraphs handed to downstream com-
ponents. The disadvantage of this setup is that the evaluation system currently does not support joint
inference over coreference and narrative coherence.

For query execution, we initially used the SM-KBP 2018 Evaluation Queries Docker tool2 provided
by NIST. However, this tool did not scale up well to the large size of the hypothesis subgraphs generated
by our system. So we switched to a tool provided by the Colorado Ramfis team, as mentioned above.

4 Discussion

Our pipeline, with its mixture of Jena queries, Python scripts, and probabilistic programs, is currently too
complex and needs too much oversight. It will need to be simplified and scaled up for future evaluations.
On the positive side, we found that Apache Jena enabled us to deal even with the large amount of data
given in this evaluation. Also the data reduction methods we implemented, k-hop subgraph extraction
and coreference reduction, made our system much more scalable.

The system submitted by the UTexas team is a baseline system that is completely symbolic. The
eventual aim of the project is to use machine learning to learn narrative coherence from large amounts of
text. This notion of coherence would then replace the baseline random-walk proximity that we have been
using in this evaluation. However there was no training data in the form of knowledge graphs available
prior to the evaluation. At this point, after the evaluation, large-scale training data analyzed by task-1 and
task-2 teams is becoming available, such that in the future we will be able to explore machine learning
models as planned.

Which inference should be done within which task? This is a fundamental question that needs to
be discussed in the future. For example, is coreference something that should be inferred along with

2https://tac.nist.gov/protected/2018-kbp/data/SM-KBP_2018_Evaluation_Queries_
Docker.tgz



logical consistency in task 3, or is this better handled within task 2? The latter approach would follow
the AIDA principle of allowing for inference in every task, with information flowing between tasks in
both directions. Also, this would allow task 3 to operate on coreference-reduced data for more scalable
inference.
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