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Abstract

Preventable adverse drug reactions as a
result of medical errors present a growing
concern in modern medicine. As drug-drug
interactions (DDIs) may cause adverse re-
actions, being able to extracting DDIs from
drug labels into machine-readable form is
an important effort in effectively deploy-
ing drug safety information. The DDI
track of TAC 2018 introduces two large
hand-annotated test sets for the task of
extracting DDIs from structured product
labels with linkage to standard terminolo-
gies. Herein, we describe our approach
to tackling tasks one and two of the DDI
track, which corresponds to named entity
recognition (NER) and sentence-level rela-
tion extraction respectively. Namely, our
approach resembles a multi-task learning
framework designed to jointly model var-
ious sub-tasks including NER and inter-
action type and outcome prediction. On
NER, our system ranked second (among
eight teams) at 33.00% and 38.25% F1 on
Test Sets 1 and 2 respectively. On rela-
tion extraction, our system ranked second
(among four teams) at 21.59% and 23.55%
on Test Sets 1 and 2 respectively.

1 Introduction

Preventable adverse drug reactions (ADRs) in-
troduce a growing concern in the modern health-
care system as they represent a large fraction of
hospital admissions and play a significant role
in increased health care costs [1]. Based on a
study examining hospital admission data, it is

estimated that approximately three to four per-
cent of hospital admissions are caused by adverse
events [2]; moreover, it is estimated that between
53% and 58% of these events were due to med-
ical errors [3] (and are therefore considered pre-
ventable). Such preventable adverse events have
been cited as the eighth leading cause of death
in the U.S., with an estimated fatality rate of
between 44,000 and 98,000 each year [4]. As
drug-drug interactions (DDIs) may lead to pre-
ventable ADRs, being able to extract DDIs from
structured product labeling (SPL) documents for
prescription drugs is an important effort toward
effective dissemination of drug safety informa-
tion. The Text Analysis Conference (TAC) is
a series of workshops aimed at encouraging re-
search in natural language processing (NLP) and
related applications by providing large test col-
lections along with a standard evaluation pro-
cedure. The Drug-Drug Interaction Extraction
from Drug Labels track of TAC 2018 [5], orga-
nized by the U.S. Food and Drug Administration
(FDA) and U.S. National Library of Medicine
(NLM), is established with the goal of transform-
ing the contents of SPLs into a machine-readable
format with linkage to standard terminologies.

We focus on the first two tasks of the DDI
track involving named entity recognition (NER)
and relation extraction (RE). Task 1 is focused
on identifying mentions in the text correspond-
ing to precipitants, interaction triggers, and in-
teraction effects. Precipitants are defined as sub-
stances, drugs, or a drug class involved in an
interaction. Task 2 is focused on identifying
sentence-level interactions; concretely, the goal is
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Figure 1: An example illustrating the DDI task

to identify the interacting precipitant, the type
of the interaction, and outcome of the interac-
tion. The interaction outcome depends on the
interaction type as follows. Pharmacodynamic
(PD) interactions are associated with a specified
effect corresponding to a span within the text
that describes the outcome of the interaction.
Naturally, it is possible for a precipitant to be
involved in multiple PD interactions. Pharma-
cokinetic (PK) interactions are associated with
a label from a fixed vocabulary of National Can-
cer Institute (NCI) Thesaurus codes indicating
various levels of increase/decrease in functional
measurements. For example, consider the sen-
tence: “There is evidence that treatment with
phenytoin leads to to decrease intestinal absorp-
tion of furosemide, and consequently to lower
peak serum furosemide concentrations.” Here,
phenytoin is involved in a PK interaction with
the label drug, furosemide, and the type of PK
interaction is indicated by the NCI Thesaurus
code C54615 which describes a decrease in the
maximum serum concentration (Cmax) of the la-
bel drug. Lastly, unspecified (UN) interactions
are interactions with an outcome that is not ex-
plicitly stated in the text and usually indicated
through cautionary statements. Figure 1 fea-
tures a simple example of a PD interaction that
is extracted from the drug label for Adenocard,
where the precipitant is digitalis and the effect
is “ventricular fibrillation.”

2 Materials and Methods

Herein, we describe the training and testing data
involved in this task and the metrics used for
evaluation. In Section 2.3, we describe our mod-
eling approach, our deep learning architecture,
and our training procedure.

2.1 Datasets

Each drug label is a collection of sections
(e.g., DOSAGE & ADMINISTRATION, CON-
TRAINDICATIONS, and WARNINGS) where
each section contains one or more sentences.
Each sentence is annotated with a list of zero
or more mentions and interactions. The train-
ing data released for this task contains 22 drug
labels, referred to as Training-22, with gold stan-
dard annotations. Two test sets of 57 and
66 drug labels, referred to as Test Set 1 and
2 respectively, with gold standard annotations
are used to evaluate participating systems. As
Training-22 is a relatively small dataset, we ad-
ditionally utilize an external dataset with 180 an-
notated drug labels dubbed NLM-180 [6] (more
later). We provide summary statistics about
these datasets in Table 1. Test Set 1 closely
resembles Training-22 with respect to the sec-
tions that are annotated. However, Test Set 1 is
more sparse in the sense that there are more sen-
tences per drug label (144 vs. 27), with a smaller
proportion of those sentences having gold anno-
tations (23% vs. 51%). Test Set 2 is unique
in that it contains annotations from only two
sections, namely DRUG INTERACTIONS and
CLINICAL PHARMACOLOGY, the latter of
which is not represented in Training-22 (nor Test
Set 1). Lastly, Training-22, Test Set 1, and Test
Set 2 all vary with respect to the distribution of
interaction types, with Training-22, Test Set 1,
and Test Set 2 containing a higher proportion of
PD, UN, and PK interactions respectively.

2.2 Evaluation Metrics

We used the official evaluation metrics for NER
and relation extraction based on the standard
precision, recall, and F1 micro-averaged over ex-
actly matched entity/relation annotations. For
either task, there are two matching criteria: pri-
mary and relaxed. For entity recognition, relaxed
matching considers only entity bounds while pri-
mary matching considers entity bounds as well
as the type of the entity. For relation extrac-
tion, relaxed matching only considers precipitant
drug (and their bounds) while primary match-
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NLM-180 * Training-22 Test Set 1 Test Set 2

Number of Drug Labels 180 22 57 66

Mean number of sentences per Drug Label 32 27 144 64

Mean number of words per sentence 23 24 22 23

Proportion of annotated sentences 27% 51% 23% 23%

Mean number of mentions per annotated sentence 4.0 3.8 3.7 3.6

Proportion of mentions that are Precipitant 57% 53% 56% 55%

Proportion of mentions that are Trigger 20% 28% 30% 33%

Proportion of mentions that are SpecificInteraction 23% 19% 14% 12%

Proportion of interactions that are Pharmacodynamic 47% 49% 33% 28%

Proportion of interactions that are Pharmacokinetic 25% 21% 28% 47%

Proportion of interactions that are Unspecified 28% 30% 39% 25%

Table 1: Characteristics of datasets
* Statistics for NLM-180 were computed on mapped examples (based on our own

annotation mapping scheme) and not based on the original dataset.

ing comprehensively considers precipitant drugs
and, for each, the corresponding interaction type
and interaction outcome. As relation extraction
evaluation takes into account the bounds of con-
stituent entity predictions, relation extraction
performance is heavily reliant on entity recog-
nition performance. On the other hand, we
note that while NER evaluation considers trig-
ger mentions, triggers are ignored when evaluat-
ing relation extraction performance.

2.3 Methodology

We propose a multi-task learning framework for
extracting drug-drug interactions from drug la-
bels. The framework involves branching paths
for each training objective (corresponding to
sub-tasks) such that parameters of earlier layers
(i.e., the context encoder) are shared.

Modeling Approach. Since only drugs in-
volved in an interaction (precipitants) are an-
notated in the ground truth, we model the task
of precipitant recognition and interaction type
prediction jointly. We accomplish this by re-
ducing the problem to a sequence tagging prob-
lem via a novel NER tagging scheme. That is,
for each precipitant drug, we additionally en-
code the associated interaction type. Hence,
there are five possible tags: T for trigger, E
for effects, and D, K, and U for precipitants

with pharmacodynamic, pharmacokinetic, and
unspecified interactions respectively. As a pre-
processsing step, we identify the label drug in
the sentence, if it is mentioned, and bind it to
a generic entity token (e.g. “LABELDRUG”).
We additionally account for label drug aliases,
such as the generic version of a brand-name drug,
and bind them to the same entity token. Ta-
ble 2 shows how the tagging scheme is applied
to the simple example in Figure 1. A drawback
is that simplifying assumptions must be made
that will hamper recall; e.g., we only consider
non-overlapping mentions (more later).

O O O O O O O B-D

The use of LABELDRUG in patients receiving digitalis

O O O B-T I-T B-E I-E O

may be rarely associated with ventricular fibrillation .

Table 2: Example of the tagging scheme

Once we have identified the precipitant offsets
(as well as of triggers/effects) and the interac-
tion type for each precipitant, we subsequently
predict the outcome or consequence of the in-
teraction (if any). To that end, we consider all
entity spans annotated with K tags and assign
them a label from a static vocabulary of 20 NCI
concept codes corresponding to PK consequence
(i.e., multiclass classification) based on sentence-
context. Likewise, we consider all entity spans
annotated with D tags and link them to mention
spans annotated with E tags; we accomplish this
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via binary classification of all pairwise combina-
tions. For entity spans annotated with U tags,
no outcome prediction is made.

Neural Network Architecture. Our pro-
posed deep neural network is illustrated in Fig-
ure 2. We utilize Bi-directional Long Short-
Term Memory networks (Bi-LSTMs) and con-
volutional neural networks (CNNs) designed for
natural language processing as building blocks
for our architecture [7, 8]. Entity recognition
and outcome prediction share common parame-
ters via a Bi-LSTM context encoder that com-
poses a context representation at each timestep
based on input words mapped to dense embed-
dings and character-CNN composed representa-
tions. We use the same character-CNN represen-
tation as described in a prior work [9]; however,
in this work, we omit the character type embed-
ding. A Bi-LSTM component is used to annotate
IOB tags for joint entity recognition and interac-
tion type prediction (or, NER prediction) while a
CNN with two separate dense output layers (one
for PK and one for PD interactions) is used for
outcome prediction. We consider NER predic-
tion to be the main objective with outcome pre-
diction playing a secondary role. When predict-
ing outcome, the contextual input is arranged
such that candidate entity (and effect) mentions
are bound to generic tokens; the resulting rep-
resentation is referred to as “entity-bound word
embeddings” in Figure 2.

Notation. We denote BiLSTM(·) : Rn×din 7→
Rn×dout as an abstract function, representing
a standard bi-directional recurrent neural net-
work with LSTM units, where n is the number
of input vector representations (e.g., word em-
beddings) in the sequence and din and dout are
the dimensionality of the input and output rep-
resentations respectively. We similarity denote
CNN[h1,...,hk](·) : Rn×din 7→ Rdout to represent
a standard CNN that maps an n × din matrix
to a vector representation of length dout, where
[h1, . . . , hk] is a list of window (or kernel) sizes
that are used in the convolution.

Context Encoder. Let the input be a sen-
tence of length n represented as a matrix S ∈
Rn×d, where each row corresponds to a word
embedding of length d. Moreover, let W i ∈
Rm×dchar represent the word at position i of the
sentence such that each of the m rows corre-
spond to a character embedding of length dchar.
The purpose of the context encoder is to encode
each word of the input with surrounding linguis-
tic features and long-distance dependency infor-
mation. To that end, we employ the use of a
Bi-LSTM network to encode S as a context ma-
trix C ∈ Rn×dcontext where dcontext is a hyper-
parameter of the network. Concretely,

C = BiLSTM

 S1 ‖ CNN[3](W 1)
...

Sn ‖ CNN[3](Wn)

 (1)

where Si denotes the ith row of S and ‖ is the vec-
tor concatenation operator. Essentially, for each
word, we compose character representations us-
ing a CNN with a window size of three and con-
catenate them to pre-trained word embeddings;
we stack the concatenated vectors as rows of a
new matrix that is ultimately fed as input to
the Bi-LSTM context encoder. The ith row of
C, denoted as Ci, represents the entire context
centered at the ith word. As an implementation
detail, we chose n and m to be the maximum
sentence and word length (according to the train-
ing data) respectively and pad shorter examples
with zero vectors.

NER Objective. The network for the NER
objective manifests as a stacked Bi-LSTM ar-
chitecture when we consider both the context
encoder and the entity recognition component.
Borrowing from residual networks [10], we re-
inforce the input by concatenating word embed-
dings to the intermediate context vectors be-
fore feeding it to the second Bi-LSTM layer.
Concretely, the final entity recognition matrix
R ∈ Rn×dner is composed such that

R = BiLSTM

 C1 ‖ S1
...

Cn ‖ Sn

 . (2)
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Figure 2: The multi-task neural network for DDI extraction

The output at each position i = 1, . . . , n is

qi = W nerRi + bner

where Ri is the ith row of R and W ner ∈ R`×dner

and bner ∈ R` are network parameters such that
` = 11 denotes the number of possible IOB tags
such as O, B-K, I-K and so on. In order to
obtain a categorical distribution, we apply the
SoftMax function to qi such that

pi = SoftMax(qi)

where pi is the vector of probability estimates
serving as a categorical distribution over ` tags
for the word at position i. We optimize by com-
puting the standard categorical cross-entropy
loss for each of the n individual tag predictions.
The final loss to be optimized is the mean over
all n individually-computed losses.

A stacked Bi-LSTM architecture improves
over a single Bi-LSTM architecture given its ca-
pacity to learn deep contextualized embeddings.
While we showed that the stacked approach is
better for this particular task in Section 3.1, it is
not necessarily the case that a stacked approach

is better in general. We offer an alternative ex-
planation and motivation for using a stacked ar-
chitecture for this particular problem based on
our initial intuition as follows. First, we note
that a standalone Bi-LSTM is not able to han-
dle the inference aspect of NER, which entails
learning IOB constraints. As an example, in the
IOB encoding scheme, it is not possible for a I-
D tag to immediately follow a B-E tag; in this
way, the prediction of a tag is directly depen-
dent on the prediction of neighboring tags. This
inference aspect is typically handled by a linear-
chain CRF. We believe that a stacked Bi-LSTM
at least partially handles this aspect in the sense
that the first Bi-LSTM (the context encoder) is
given the opportunity to form independent pre-
liminary decisions while the second Bi-LSTM is
tasked with to making final decisions (based on
preliminary ones) that are more globally consis-
tent with respect to IOB constraints.

Outcome Objective. To predict outcome, we
construct a secondary branch in the network
path that involves convolving over the word and
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context embeddings made available in earlier lay-
ers. We first define a relation representation
v ∈ Rdrel that is produced by convolving with
window sizes 3, 4, and 5 over the context vec-
tors concatenated to entity-bound1 versions of
the original input; concretely,

v = CNN[3,4,5]

 C1 ‖ S
′
1

...

Cn ‖ S
′
n

 .

where S
′

is the entity-bound version of S. Based
on this outcome representation, we compose two
separate softmax outputs: one for PK interac-
tions and one for PD interactions. Concretely,
the output layers are

pPK = SoftMax(WPKv + bPK)

and
pPD = SoftMax(WPDv + bPD)

where pPK ∈ R`PK
and pPD ∈ R`PD

are probabil-
ity estimates serving as a categorical distribution
over the outcome label space for PD and PK re-
spectively and WPD, WPK, bPK, and bPD are
parameters of the network. For PK, `PK = 20
given there are 20 possible NCI Thesaurus codes
corresponding to PK outcomes. For PD, `PD = 2
as it is a binary classification problem to assess
whether the precipitant and effect pair encoded
by S

′
are linked. We optimize using the standard

categorical cross-entropy loss on both objectives.

Training Data. In NLM-180, there is no dis-
tinction between triggers and effects; moreover,
PK effects are limited to coarse-grained (binary)
labels corresponding to increase or decrease in
function measurements. Hence, a direct map-
ping from NLM-180 to Training-22 is impossi-
ble. As a compromise, NLM-180 “triggers” were
mapped to Training-22 triggers in the case of un-
specified and PK interactions. For PD interac-
tions, we instead mapped NLM-180 “triggers” to

1We refer to the process of generating examples for
relation classification, wherein mentions of candidate en-
tities in the context are replaced with generic tokens
that are also learned during back-propagation, as “entity-
binding.”

Training-22 effects, which we believe to be appro-
priate based on our manual analysis of the data.
Since we do not have both trigger and effect for
every PD interaction, we opted to ignore trigger
mentions altogether in the case of PD interac-
tions to avoid introducing mixed signals. While
trigger recognition has no bearing on relation ex-
traction performance, this policy has the effect
of reducing the recall upperbound on NER by
about 25% (more later on upperbound). To over-
come the lack of fine-grained annotations for PK
outcome in NLM-180, we deploy the well-known
bootstrapping approach [11] to incrementally an-
notate NLM-180 PK outcomes using Training-22
annotations as seed examples. To mitigate the
problem of semantic drift, in each bootstrap cy-
cle, we re-annotated by hand predictions that
were not consistent with the original NLM-180
coarse annotations (i.e., active learning [12]).

Training Procedure. We train the three ob-
jective losses (NER, PK outcome, and PD out-
come) in an interleaved fashion at the mini-
batch [13] level. We use word embeddings of size
200 pre-trained on the PubMed corpus [14] as
input to the network; these are further modified
during back-propagation. For the character-level
CNN, we set the character embedding size to 24
with 50 filters over a window size of 3; the fi-
nal character-CNN composition is therefore of
length 50. For each Bi-LSTM, the hidden size
is set to 100 such that context vectors are 200
in length. For outcome prediction, we used win-
dow sizes of 3, 4, and 5 with 50 filters per window
size; the final vector representation for outcome
prediction is therefore 150 in length.

A held-out development set of 4 drug labels
is used for tuning and validation. The models
are trained for 30 epochs with check-pointing;
only the check-point with the best performance
on the development set is kept for testing. We
dynamically set the mini-batch size Nb as a func-
tion of the number of examples N such that the
number of training iterations is roughly 300 per
epoch (and also constant regardless of training
data size); concretely, Nb = bN/300c + 1. As
a form of regularization, we apply dropout [15]
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at a rate of 50% on the hidden representations
immediately after a Bi-LSTM or CNN compo-
sition. The outcome objectives are trained such
that the gradients of the context encoder weights
are downscaled by an order of magnitude (i.e.,
one tenth) to encourage learning at the later lay-
ers. When learning on the NER objective – the
main branch of the network – the gradients are
not downscaled in the same manner. Moreover,
when training on the NER objective, we up-
weight the loss penalty on “relation” tags (non-O
tags) by a factor of 10, which forces the model to
prioritize differentiation between different types
of interactions over span segmentation. We ad-
ditionally upweight the loss penalty by a factor
of 3 on Training-22 examples compared to NLM-
180 examples. We optimize using the Adam [16]
optimization method. These hyper-parameters
were tuned during initial experiments.

3 Results and Discussion

In this section, we present and discuss the results
of our cross-validation experiments. We then de-
scribe the “runs” that were submitted as chal-
lenge entries and present our official challenge
results. We discuss these results in Section 3.3.

3.1 Validation Results

We present the results of our initial experiments
in Table 3. Evaluations were produced as as re-
sult of 11-fold cross-validation over Training-22
with two drug labels per fold. Instead of macro-
averaging over folds, and thereby weighting each
fold equally, we evaluate on the union of all 11
test-fold predictions.

The upperbound in Table 3 is produced by
reducing Training-22 (with gold labels) to our
sequence-tagging format and then reverting it
back to the original official XML format. Low-
ered recall is mostly due to simplifying assump-
tions; e.g., we only consider non-overlapping
mentions. For coordinated disjoint cases such
as “X and Y inducers”, we only considered “Y
inducers” in our simplifying assumption. Im-
perfect precision is due to discrepancies between
the tokenization scheme used by our method and

that used to produce gold annotations; this leads
to the occasional mismatch in entity offsets dur-
ing evaluation.

Using a stacked Bi-LSTM trained on the orig-
inal 22 training examples (Table 3; row 1) as
our baseline, we make the following observa-
tions. Incorporating NLM-180 resulted in a sig-
nificant boost of more than 20 F1-points in re-
lation extraction performance and more than 10
F1-points in NER performance (Table 3; row 2),
despite the lowered upperbound on NER recall
as mentioned in Section 2.3. Adding character-
CNN based word representations improved per-
formance marginally, more so for NER than re-
lation extraction (Table 3; row 3). We also im-
plemented several tweaks to the pre-processing
and post-processing aspects of the model based
on preliminary error analysis including (1) using
drug class mentions (e.g., “diuretics”) as prox-
ies if the drug label is not mentioned directly;
(2) removing modifiers such as moderate, strong,
and potent so that output conforms to official
annotation guidelines; and (3) purging predicted
mentions with only stopwords or generic terms
such as “drugs” or “agents.” These tweaks im-
proved performance by more than two F1-points
across both metrics (Table 3; row 4).

Stacked architecture. Based on early exper-
iments with simpler models tuned on relaxed
matching (not shown in Table 3 and not directly
comparable to results displayed in Table 3), we
found that a stacked Bi-LSTM architecture im-
proves over a single Bi-LSTM by approximately
four F1-points on relation extraction (55.59% vs.
51.55% F1 tuned on the relaxed matching crite-
ria). We moreover found that omitting word em-
beddings as input at the second Bi-LSTM results
in worse performance at 52.91% F1.

Temporal Convolution Networks. We also
experimented with using Temporal Convolution
Networks (TCNs) [17] as a “drop-in” replace-
ment for Bi-LSTMs. Our attempts involved re-
placing only the second Bi-LSTM with a TCN
(Table 3; row 4) as well as replacing both Bi-
LSTMs with TCNs (Table 3; row 5). The re-

7



Entity (Primary) Relation (Primary)

Model / Data P (%) R (%) F (%) P (%) R (%) F (%)

Stacked Bi-LSTM / Training-22 37.22 40.74 38.90 18.76 23.50 20.86

Stacked Bi-LSTM / Training-22 + NLM-180 49.45 49.79 49.62 42.54 43.56 43.05

Char-CNN + Stacked Bi-LSTM / Training-22 + NLM-180 51.63 50.97 51.30 43.09 44.31 43.69

Char-CNN + Stacked Bi-LSTM + Tweaks / Training-22 + NLM-180 53.72 53.76 53.74 46.35 45.66 46.00

Char-CNN + Bi-LSTM + TCN / Training-22 + NLM-180 48.82 50.72 49.75 39.68 41.17 39.68

Char-CNN + Stacked TCN / Training-22 + NLM-180 41.46 48.44 44.68 32.15 36.68 34.27

Upperbound due to simplifying assumptions 99.21 74.56 85.14 97.49 81.44 88.74

Table 3: Preliminary results based on 11-fold cross validation over Training-22 with two held-out
drug labels per fold. When NLM-180 is incorporated, the training data used for each fold consists
of 20 non-held out drug labels from Training-22 and all 180 drug labels from NLM-180.

sults of these early experiments were not promis-
ing and further fine-tuning may be necessary for
better performance.

3.2 Official Test Results

Our final system submission is based on a stacked
Bi-LSTM network with character-CNNs trained
on both Training-22 and NLM-180 (correspond-
ing to row 4 of Table 3). We submitted the fol-
lowing three runs based on this architecture:

1. A single model.

2. An ensemble over ten models each trained
with randomly initialized weights and a ran-
dom development split. Intuitively, models
collectively “vote” on predicted annotations
that are kept and annotations that are dis-
carded. A unique annotation (entity or re-
lation) has one vote for each time it ap-
pears in one of the ten model prediction
sets. In terms of implementation, unique
annotations are incrementally added (to the
final prediction set) in order of descend-
ing vote count; subsequent annotations that
conflict (i.e., overlap based on character
offsets) with existing annotations are dis-
carded. Hence, we loosely refer to this ap-
proach as “voting-based” ensembling.

3. A single model with pre/post-processing
rules to handle modifier coordinations; for
example, “X and Y inducers” would be cor-
rectly identified as two distinct entities cor-

responding to “X inducers” and “Y induc-
ers.” Here, we essentially encoded “X and
Y inducers” as a single entity when training
the NER objective; during test time, we use
simple rules based on pattern matching to
split the joint “entity” into its constituents.

Eight teams participated in task 1 while four
teams participated in task 2. We record the rel-
ative performance of our system (among others
in the top 5) on the two official test sets in Ta-
ble 4. For each team, we only display the perfor-
mance of the best run for a particular test set.
Methods are grouped by the data used for train-
ing and ranked in ascending order of primary
relation extraction performance followed by en-
tity recognition performance. We also included a
single model trained solely on Training-22, that
was not submitted, for comparison. Our voting-
based ensemble performed best among the three
systems submitted by our team on both NER
and relation extraction. In the official challenge,
this model placed second overall on both NER
and relation extraction.

Tang et al. [21] boasts the top performing sys-
tem on both tasks. In addition to Training-22
and NLM-180, the team trained and validated
their models on a set of 1148 sentences sampled
from DailyMed labels that were manually anno-
tated according to official annotation guidelines.
Hence, strictly speaking, their method is not di-
rectly comparable to ours given the significant
difference in available training data.
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Entity (Primary) Relation (Relaxed) Relation (Primary)

Training Data Method P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

Training-22 Ours (Single model)1 21.74 33.84 26.47 32.95 34.57 33.74 15.49 15.42 15.45

Training-22 + NLM-180

Zhang and Kordjamshidi [18] 17.00 15.86 16.41 - - - - - -

Akhtyamova and Cardiff [19] 37.96 20.39 26.53 - - - - - -

Ours (Modifier Coordination) 28.63 27.48 28.04 38.97 30.62 34.30 21.94 16.57 18.88

Ours (Single model) 29.64 31.58 30.58 38.16 33.80 35.85 21.28 18.09 19.55

Dandala et al. [20] 41.94 23.19 29.87 46.60 29.78 36.34 25.24 16.10 19.66

Ours (Ensemble) 29.50 37.45 33.00 40.55 38.36 39.43 22.08 21.13 21.59

Training-22 + NLM-180 + HS2 Tang et al. [21] 55.23 38.32 45.25 71.70 45.46 55.64 54.43 32.76 40.90

(a) System performance on Official Test Set 1

Entity (Primary) Relation (Relaxed) Relation (Primary)

Training Data Method P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

Training-22 Ours (Single model)1 27.77 33.31 30.29 38.38 40.85 39.58 16.17 15.39 15.77

Training-22 + NLM-180

Zhang and Kordjamshidi [18] 17.13 21.89 19.22 - - - - - -

Akhtyamova and Cardiff [19] 37.76 24.07 29.40 - - - - - -

Ours (Modifier Coordination) 34.92 30.33 32.46 46.72 36.13 40.75 21.39 15.67 18.09

Dandala et al. [20] 44.61 29.31 35.38 50.07 36.86 42.46 22.99 16.83 19.43

Ours (Single model) 35.29 33.47 34.36 44.93 37.64 40.96 22.51 17.71 19.82

Ours (Ensemble) 36.68 40.02 38.28 49.51 44.27 46.74 22.53 21.13 23.55

Training-22 + NLM-180 + HS2 Tang et al. [21] 51.23 42.39 46.39 66.99 49.58 56.98 48.92 34.49 40.46

(b) System performance on Official Test Set 2

Table 4: Comparison of our method with that of other teams in the top 5. Only the best perform-
ing method of each team is shown; methods are grouped by available training data and ranked
in ascending order by relation extraction (primary) performance followed by entity recognition
performance.
1This model was not submitted and is shown for reference only
2HS refers to a private dataset of 1148 sentences manually-annotated by Tang et al. [21] according to official guidelines

3.3 Discussion

While precision was similar between the three
systems (with exceptions), we observed that our
ensemble-based system benefited mostly from
improved recall. This aligns with our initial ex-
pectation (based on prior experience with deep
learning models) that an ensemble-based ap-
proach would improve stability and accuracy
with deep neural models. Although including
NLM-180 as training data resulted in significant
performance gains during 11-fold cross valida-
tion, we find that the same improvements were
not as dramatic on either test sets despite the
800% gain in training data. As such, we offer
the following analysis. First, we suspect that
there may be a semantic or annotation drift be-
tween these datasets as annotation guidelines

evolve over time and as annotators become more
experienced. To our knowledge, the datasets
were annotated in the following order: NLM-180,
Training-22, and finally Test Sets 1 and 2; more-
over, Test Sets 1 and 2 were annotated by sep-
arate groups of annotators. Second, having few
but higher quality examples may be more ad-
vantageous than having many but lower quality
examples, at least for this particular task where
evaluation is based on matching exact character
offsets. Finally, we note that the top perform-
ing system exhibits superior performance on Test
Set 1 compared to Test Set 2; interestingly, we
observe an inverse of the scenario in our own sys-
tem. This may be an indicator that our system
struggles with data that is more “sparse” (as pre-
viously defined in Section 2.1).
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4 Conclusion

We presented a method for jointly extracting
precipitants and their interaction types as part
of a multi-task framework that additionally de-
tects interaction outcome. Among three “runs”,
a ten model voting-ensemble was our best per-
former. In future efforts, we will experiment with
Graph Convolution Networks [22] over depen-
dency trees as a “drop-in” replace for Bi-LSTMs
to assess its suitability for this task.
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