
Diffbot’s Fine-Grained Entity Typing System for TAC KBP 2019

Zhaochen Guo and Chunliang Lyu

Diffbot Inc.

{zhaochen,chunliang}@diffbot.com

Abstract

In this report, we give a detailed descrip-
tion of Diffbot’s system for the TAC-KBP
2019 Fine-Grained Entity Typing track.
Fine-grained entity typing is a task to ex-
tract mentions of pre-defined types and as-
sign fine-grained types to those mentions.
Instead of modeling the task as a multi-
label classification problem, we tackle it
using Entity Linking (EL) by first link-
ing mentions to their referent entities in a
Knowledge Base (KB) and then inferring
the fine-grained types of mentions based
on the linking results and type ontology.

1 Entity Linking

Our Entity Linking component is to detect men-
tions from given texts, and then disambiguate
them to their referent entities in a KB. It mainly
consists of two steps: Mention Detection and Men-
tion Disambiguation

1.1 Mention Detection

Our Mention Detection uses a Bi-LSTM-
CRF based model for Named Entity Recogni-
tion (NER) (Huang et al., 2015), which detects
named entities and assigns them with coarse types
such as Person, Organization, GPE, and Misc.
To address the name variation issue and increase
the recall of mention detection, we also exploit a
mention dictionary collected from various sources
in Wikipedia (mainly Wikipedia title and wik-
ilinks), with which we do an exhaustive search for
names in the dictionary. Our mention detection
can achieve a recall of 99% on some datasets such
as TAC-KBP 20101, with some noisy mentions
introduced.

1https://tac.nist.gov/2010/

1.2 Mention Disambiguation
For the disambiguation part, we employ Gradi-
ent Boosting Decision Tree (GDBT) to incorpo-
rate features from different categories. Figure 1
lists the major features used in our disambiguation
system.

Lexical Name related similarity

Statistical
Prior(e|m)
InLinks(e)
OutLinks(e)

Contextual
Word context similarity

Category similarity

Semantic
Word-Word embedding similarity
Word-Entity embedding similarity
Entity-Entity embedding similarity

Table 1: Features for mention disambiguation

For the embedding based similarity, we use the
embedding generated from Wikipedia2Vec (Ya-
mada et al., 2018) which maps the representa-
tion of words and entities into the same vector
space. Our system can achieve 89% accuracy on
the TAC-KBP 2010 EDL dataset, on par with the
state-of-the-art.

2 Entity Typing

2.1 Type Ontology
To infer the types of mentions, we will need to
map each entity in the KB to their types in the
AIDA ontology. We organize the type ontology
in a tree structure, with the top nodes being the
most generic types such as PER, ORG, or FAC.
and the leaf nodes are the entities. We use the
YAGO AIDA type mapping to map each entity to
their AIDA types.

Figure 1 gives an example type ontology. As
shown, some entities (e.g. New York Freedom) be-
long to multiple types, which posits a challenge
for the type inference.



Figure 1: An example type ontology.

2.2 Type Inference
There are mainly three cases for each mention dur-
ing type inference. The first one is when a mention
is linked to an Out-of-KB entity (NIL), in which
no type is available from the KB. In this case, we
use the coarse type obtained from Mention Detec-
tion. The second case is the referent entity of a
mention has only one type, for which we use the
type as the inferred type for the mention. The third
case is to choose the most relevant type among the
multiple types of the referent entity.

Our first approach was to pick the type with the
largest number of entities; however, it made too
many false positive errors since it doesn’t consider
the semantics of types. Instead, we choose k enti-
ties 2 for each type to capture the semantics of the
type, assuming that the probability an entity be-
longs to a type can be approximated by its seman-
tic similarity to the type’s representative entities.

For each type, let E(type) be the set of repre-
sentative entities.

E(type) = {ei}1≤i≤k
We then measure the semantic similarity
sem sim(em, type) between the referent en-
tity em and type as follows:

sem sim(em, type) =

∑
ei∈E sem sim(em, ei)

k

Here the semantic similarity sem sim(em, ei) be-
tween entities is measured by the dot product of
entity embeddings of em and ei.

2k is set to 10 experimentally

The criteria to pick the k entities for each type
is based on popularity, measured by their PageR-
ank value computed on the Wikipedia link graph 3.
Our results indicate that this approach can greatly
improve the accuracy of entity typing. To allevi-
ate the Out-of-KB issue and infer the fine-grained
types of mentions, an idea we would like to ex-
plore is to measure the semantic similarity be-
tween the contextual words of a mention and the
representative entities of a type, and select the type
with the highest similarity.

3 Results

We submitted 1 run for both the feedback and the
final evaluation. Our system gets 0.422 precision,
0.358 recall, and 0.388 F1 on the final evaluation.

3.1 Error Analysis

We manually inspected the results and found a few
issues in our entity typing system. The biggest one
is from the mention detection component which
introduced many extraneous mentions. This is a
common issue in most entity typing systems, and
can be further improved by better mention detec-
tion approaches. Regarding our EL-based typing
approach, there are mainly two challenges: 1) er-
rors propagated from wrong EL results, and 2) the
types of mentions that are linked to Out-of-KB
entities, in which case we only report the coarse
types inferred from NER. When mentions are cor-
rectly linked to their referent entities, our system
can accurately infer the fine-grained types of men-
tions.

4 Conclusion

This report described our fine-grained entity typ-
ing system and analyzed the advantages and chal-
lenges of our system. We found that a highly accu-
rate entity linking system could help with the en-
tity typing, with some performance sacrifice from
wrong EL results and missing types of the Out-
of-KB entities. On the other hand, we believe that
entity linking systems can be used to generate high
quality of training datasets for the entity typing
task, especially with the high cost of data anno-
tation.

3https://github.com/athalhammer/danker



References
Ikuya Yamada, Akari Asai, Hiroyuki Shindo,

Hideaki Takeda, and Yoshiyasu Takefuji 2018.
Wikipedia2Vec: An Optimized Tool for Learning
Embeddings of Words and Entities from Wikipedia.
arXiv preprint 1812.06280

Zhiheng Huang, Wei Xu, and Kai Yu 2015. Bidi-
rectional LSTM-CRF Models for Sequence Tagging.
arXiv:1508.01991


