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Abstract

Drug-Drug Interactions (DDI), which lead to ad-
verse events, have been identified as the eighth
leading cause of death in the United States
(Goldstein et al., 2005). Structured Product
Labeling (SPL) documents are a rich source
of information for drug labels, but it is es-
sential to convert them to discrete, coded in-
formation in order to enable automatic extrac-
tion of drug interactions. TAC 2019 DDI track
defined multiple Natural Language Processing
(NLP) tasks, namely concept extraction of Pre-
cipitant and SpecificInteraction (Task 1), relation
extraction of interactions and their types (Task
2), concept normalization (Task 3) and gener-
ation of a global list of interactions per SPL
document (Task 4). We participated in Tasks 1
and 2, where we used a combination of a novel
tagging scheme, a fine-tuned transformer-based
language model, and a syntactic-parse based
knowledge-injected pattern matching technique.
We submitted three systems for both Tasks 1 and
2. We achieved an F1-score of 65.38, 64.62 and
65.18 for Task 1, and an F1-score of 49.03, 48.33
and 48.39 for Task 2. Our system ranked first,
with the highest F1-score for both Tasks 1 and
2, thus demonstrating an effective adaptation of
our hybrid system on the DDI extraction tasks.

1 Introduction

Structured Product Labeling (SPL) is a Health Level
Seven International (HL7) standard adopted by the
U.S Food and Drug administration (FDA) in or-
der to exchange product information. These doc-
uments express the content of human prescription
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drugs in an XML format. It is critical to convert
the narrative text present in the SPL documents into
computer-readable data, in order to enable effec-
tive deployment of drug safety information. To en-
able this, the FDA and the U.S. National Library
of Medicine (NLM) have been working together by
organizing NLP challenges such as Adverse Drug
Reaction (ADR) extraction in Text Analysis Con-
ference (TAC) 2017 (Roberts et al., 2017), followed
by DDI extraction in TAC 2018 (Demner-Fushman
et al., 2018) and TAC 2019. We participated in Tasks
1 and 2 of TAC 2019, described below:

• Task 1: Concept Extraction task (NER): Ex-
traction of mentions, namely Precipitants and
SpecificInteractions at a sentence level. Pre-
cipitants are defined as a drug, drug class
or substance interacting with the label drug.
SpecificInteraction (SI) is generally a disor-
der, or a biomedical result of the DDI. Trig-
ger is defined as a trigger word or a phrase for
an interaction event. However, Trigger mention
type is not evaluated as a part of Task 1.

• Task 2: Relation Extraction task (RE): Iden-
tify interactions at a sentence level for the given
Precipitant, associate it with a Trigger and clas-
sify the interactions into the following: Phar-
macokinetic (drug-drug effects on each other),
Pharmacodynamic (an effect of the drug com-
bination on the organism) and Unspecified
(general warnings of risk against combining
Precipitant with label drug). Furthermore,
identify the outcomes associated with the Phar-
macodynamic interaction (SpecificInteraction).

Traditionally, a Named Entity Recognition (NER)
system would be employed to find the mentions



in Task 1 and a Relation Extraction (RE) system
would be utilized to identify the type of interaction
between label drug and the Precipitant in Task 2.
However, for Task 2, we observed for every inter-
action relation, the trigger belonging to each rela-
tion type can be leveraged to indicate the relation
types directly. Thus, we employed a DDI extrac-
tion system where we constructed NER models for
both Tasks 1 and 2, one for each mention type (Pre-
cipitant, SpecificInteraction and interaction-specific
Trigger), eliminating the need for a traditional RE
method. Further, we observed that a substantial per-
centage of the mentions were discontinuous. Thus,
we propose a novel hybrid methodology of con-
cept representation, where we employ knowledge-
injected syntactic-parse based pattern matching to
reduce complexities due to a multi-model approach
or label sparsity issues associated with other tagging
schemes. We also evaluate language model based
fine-tuning approach for these NER tasks.

The rest of this paper is organized as follows: we
review previous related tasks and approaches in sec-
tion 2. Next, we elaborate on the dataset, our ob-
servations and our modeling approach in section 3.
In section 4, we describe our novel hybrid tagging
scheme with its encoding and decoding algorithms.
In section 5, we detail our architecture, followed by
our submissions and results. Finally, we conclude
with discussion and future work in section 6.

2 Related Tasks

Similar Drug-Drug Interaction tasks have been pro-
posed in the past (Segura-Bedmar et al., 2011;
Segura-Bedmar et al., 2013; Demner-Fushman
et al., 2018).

Among these, Demner-Fushman et al. (2018) is
the closest to the current TAC DDI challenge, shar-
ing annotation guidelines as well as a part of the
dataset. The best performance in TAC DDI 2018
was achieved by Tang et al. (2018), where they em-
ployed a two-step joint model consisting of CNN
based encoder and RNN based decoder. They used
fine-grained triggers to extract interaction relations
and BIOHD tagging for NER tasks. Tran et al.
(2019) proposed a multi-task learning framework
designed to jointly model Tasks 1 and 2. In our
previous work for TAC DDI 2018 (Dandala et al.,
2018), we leveraged a different dataset of compa-

rable definition to overcome the lack of sufficient
ground truth. We were the only team that partici-
pated in all the tasks and hence, had an end-to-end
system for Drug-Drug Interaction extraction.

Compared to last year, the dataset size has in-
creased from 22 SPLs to 211 SPLs. The evaluation
metrics have evolved to not include Trigger evalua-
tion as a part of Task 1. Further, during evaluation
the extracted mention text is compared rather than
the span offset in the sentence. In our participation
this year, we apply current state-of-the-art NER ex-
traction techniques (Devlin et al., 2018) along with
a novel hybrid tagging scheme for the NER and RE
tasks.

3 Dataset & Modeling

As a part of the DDI Track, 211 SPLs were provided
as training data to track participants. For Task 1, the
training data contained 9048 Precipitant mentions,
2744 SpecificInteraction mentions and 5345 Trigger
mentions. These mentions contained 322 (3.55%),
279 (10.17%) and 1876 (35.1%) disjoint mentions
respectively. For Task 2, the dataset contained
3176 Pharmacokinetic Interactions, 4324 Pharma-
codynamic Interactions and 2918 Unspecified Inter-
actions.

In the following sections, we discuss the clean-
up effort undertaken to improve the quality of the
ground truth in subsection 3.1, followed by our mod-
eling approach for Tasks 1 and 2 in subsection 3.2.

3.1 Data Cleanup
A sizable effort was spent in fixing span issues in
the released ground truth annotations. Some of the
inconsistencies observed are as follows:

• Mention spans expressed with an invalid begin
index of -1.

• Inconsistency in annotation for a specific piece
of text. For example: the first occurrence
of P-gp inhibitors in a sentence is sometimes
marked as a Precipitant in that sentence, but
not the following occurrence in the same sen-
tence.

• Sub-word annotation in mention, instead of the
whole word following it. For example: an-
notation of a sub-word sirolimus in sentence



Type Subtype Sentence Text Mention
Text(s)

Regular
Continuous

Entity
Coadministration of antiplatelet agents and chronic

NSAID use increases the risk of bleeding.
antiplatelet

agents

Irregular
Overlapping

Entity

Avoid concomitant use of ELIQUIS with P-gp and strong
CYP3A4 inducers as it will decrease exposure to

apixaban.

P-gp | inducers,
strong CYP3A4

inducers

Disjoint
Entity

As the blood pressure falls under the potentiating effect
of LASIX, a further reduction in dosage or even

discontinuation of other antihypertensive drugs may be
necessary.

potentiating
effect |

reduction in
dosage |

discontinuation
The delimiter | indicates disjoint entities as expressed in ground truth.

Table 1: Entity Type Examples

Patients receiving coadministration of ACE
inhibitor and mTOR inhibitor (temsirolimus,
sirolimus) therapy may be at increased risk for
angioedema.

• Incorrect annotation of discontinuous mention
text, in addition to its super-span in the same
sentence. For example: A span such as
P-gp and strong CYP3A inhibitors is some-
times marked as three individual Precipitants,
namely; P-gp | inhibitors and strong CYP3A in-
hibitors in addition to its super-span P-gp and
strong CYP3A inhibitors.

We developed semi-automated approaches to cor-
rect such instances based on the timely feedback re-
ceived from track organizers. This helped improve
the consistency of our training data, and hence the
quality of our system predictions.

3.2 Modeling Approach
We propose a multi-step modeling approach to iden-
tify the mentions (Precipitant and SpecificInterac-
tion) which form Task 1 and the interaction re-
lation types (Pharmacodynamic, Pharmacokinetic
and Unspecified) which form Task 2. In this pro-
cess, we train a NER model for each mention type,
namely Precipitant and SpecificInteraction. For
identification of the interaction relation types, we
observed that the Trigger associated with each in-
teraction relation can be leveraged to indicate the
relation type directly. Thus, we replace the re-
lation extraction process for Task 2 with a NER

task in which we model interaction-specific Trig-
gers. The interaction-specific Triggers are of three
kinds: TRIG-K (Pharmacokinetic Trigger), TRIG-
D (Pharmacodynamic Trigger) and TRIG-U (Un-
specified Trigger). We employ the tagging approach
detailed in section 4 to encode and decode these en-
tities.

Our training process results in three separate NER
models, which we apply as follows:

1. Apply the Precipitant model to identify Pre-
cipitants in a sentence.

2. Determine if any predicted Precipitants are la-
bel drug or a variant of the label drug (e.g.
generic name, drug class), and we remove such
Precipitants.

3. Apply the interaction-specific Trigger model
only for sentences which have valid Precipi-
tants, and identify the type of interaction rela-
tion for that Precipitant.

4. In case of TRIG-D, we apply the SpecificInter-
action model to identify the effect of the Phar-
macodynamic interaction.

‡DDI Guidelines https://bionlp.nlm.
nih.gov/tac2019druginteractions/
DDIvalidationGuidelines.docx

‡DDI Decision Tree https://bionlp.nlm.nih.
gov/tac2019druginteractions/DDI_decision_
tree.xlsx

https://bionlp.nlm.nih.gov/tac2019druginteractions/DDIvalidationGuidelines.docx
https://bionlp.nlm.nih.gov/tac2019druginteractions/DDIvalidationGuidelines.docx
https://bionlp.nlm.nih.gov/tac2019druginteractions/DDIvalidationGuidelines.docx
https://bionlp.nlm.nih.gov/tac2019druginteractions/DDI_decision_tree.xlsx
https://bionlp.nlm.nih.gov/tac2019druginteractions/DDI_decision_tree.xlsx
https://bionlp.nlm.nih.gov/tac2019druginteractions/DDI_decision_tree.xlsx


These steps mirror the human annotation pro-
cess as specified in the TAC 2019 decision tree and
guideline documents‡.

4 Tagging Scheme

Typically, named entities are regular concepts, with
a continuous sequence of words. Thus, NER sys-
tems encode annotated concepts using BIO tagging,
where each token is assigned into one of the three
labels: B means beginning, I means inside, and O
means outside of a concept. However, BIO tagging
is not sufficient for this NER task as 14% of the con-
cepts are irregular. Further, we found there are two
types of irregular concepts:

• Overlapping Entity, which is a group of two
or more concepts that share a token or a phrase.
As shown in Table 1, the two concepts P-gp |
inducers and strong CYP3A4 inducers belong
to a single Overlapping Entity as they share in-
ducers.

• Non-overlapping Disjoint Entity, which is an
irregular concept which has no shared tokens
with any other concept. As shown in Table 1,
a single concept potentiating effect | reduction
in dosage | discontinuation forms a single Dis-
joint Entity.

In the following subsection 4.1, we review the
popular tagging schemes currently applied on irreg-
ular concepts, and their drawbacks when applied on
the more complex examples, as exemplified in Table
2. In subsection 4.2, we propose our hybrid tagging
scheme, and discuss its improvements and limita-
tions. Finally, in subsection 4.3, we detail our de-
coding scheme, which comprises of syntactic-parse
based knowledge-injected post-processing.

4.1 Previous Work

To overcome the shortages of BIO tagging for irreg-
ular concepts, Tang et al. (2013) has suggested a
BIOHD tagging scheme which works well for dis-
jointed and overlapping concepts. In this tagging
scheme there are 7 labels {B I O HB HI DB DI}
defined as follows:

• HB and HI refer to tokens that are shared by
multiple concepts. These tokens are the over-

lapped portions of disjoint concepts. These to-
kens or sequence of tokens are referred to as
head components.

• DB and DI refer to tokens that belong to dis-
joint concepts, however these tokens are not
shared by multiple concepts. These tokens or
sequence of tokens are referred to as non-head
components.

• B and I are used to label the tokens that belong
to continuous concepts and,

• O refers to tokens that are outside of concepts

For decoding, it is trivial to merge continuous
concepts (BIO tags). For irregular concepts, Tang
et al. (2013) suggests merging head components
with all other non-head components, and in absence
of a head component combine all non-head compo-
nents to form irregular concepts. However, the de-
coding process suffers from ambiguity when there
are multiple occurrences of any type of irregular
concept in a sentence, failing to reconstruct men-
tions for all categories listed in Table 2.

As a solution to this drawback, Tang et al. (2015)
proposed BIOHD1234, and Li et al. (2018) pro-
posed NerOne. In previous works, we have em-
ployed these tagging techniques for extracting Ad-
verse Drug Reactions (Dandala et al., 2017) and
extracting Drug-Drug Interactions (Dandala et al.,
2018) from SPL documents, which had similar NER
tasks with irregular concepts. However, we ob-
served that these tagging schemes have an added
layer of complexity, in the form of label sparsity
(Tang et al., 2015) or training an additional classi-
fication submodel (Li et al., 2018).

Thus, we suggest an alternate hybrid tagging ap-
proach. During the encoding phase, we:

• identify overlapping entities from shared con-
cepts and merge them, thereby, converting
them into continuous concepts and eliminating
the need for HB and HI tags

• apply DB and DI tags on non-overlapping dis-
joint entities

During the decoding phase, we employ syntactic-
parse based knowledge-injected pattern matching to
extract mentions. Our encoding and decoding pro-
cess is detailed in the following sections.



Category Sentence Text Mention Text(s) as in
the Ground Truth

Mention Text(s)
after DBIO

Encoding Process

Multiple†

Overlapping
Entities

Avoid concomitant use of ELIQUIS
with P-gp and strong CYP3A

inhibitors, as well as P-glycoprotein
and other CYP inducers.

P-gp | inhibitors,
strong CYP3A4
inhibitors,

P-glycoprotein |
inducers,

other CYP inducers |
inducers

P-gp and strong
CYP3A4 inhibitors,
P-glycoprotein and
other CYP inducers

Multiple
Overlapping
& Disjoint

Entities

Combined P-gp and strong CYP3A
inhibitors and other drugs that , like

XARELTO , impair hemostasis
increases the risk of bleeding.

P-gp | inhibitors,
strong CYP3A4
inhibitors,

other drugs that |
impair hemostasis

P-gp and strong
CYP3A inhibitors,
other drugs that like
XARELTO impair

hemostasis

Multiple
Disjoint
Entities

LASIX has a tendency to antagonize
the skeletal muscle relaxing effect of
tubocurarine and may potentiate the

action of succinylcholine

antagonize | effect,
potentiate | action

antagonize | effect,
potentiate | action

The delimiter | indicates disjoint mentions as expressed in ground truth.

Table 2: Multiple Irregular Concepts in a Sentence

4.2 Hybrid DBIO Tagging Scheme
We propose a hybrid DBIO tagging scheme which
has 5 labels {B I O DB DI}. These labels are applied
according to the type of the entity as detailed below:

• Continuous Entities: We use B and I tags to
label tokens belonging to continuous concepts.

• Disjoint Entities: For non-overlapping dis-
joint entities, we use DB and DI tags to label
the concepts.

• Overlapping Entities: For an Overlapping
Entity E which has a group of irregular con-
cepts having shared token(s), we first merge the
discontinuous spans of these concepts to form
a merged continuous concept m. Start span of
m is defined as the MIN(estart in E) and end
span of m is the MAX(eend in E). We replace
E with the merged and now continuous concept
m. We use B and I tags to label m. Applying
this technique to the overlapping entity exam-
ple mentioned in Table 1, the two mentions P-
gp | inducers and strong CYP3A4 inducers are
merged into a single † mention P-gp and strong
CYP3A4 inducers.

• Others/Non Entities: O is used to label tokens
outside of the above entities.

During the decoding process, we first reconstruct
all the continuous entities by combining the B and I
tags, and construct a single disjoint entity by merg-
ing all disjoint components. To extract overlap-
ping entities from continuous concepts, we apply a
dependency parse-based syntactic pattern matching
technique. This process is explained in section 4.3.

The proposed tagging scheme allows for a sim-
pler post-processing step for extracting overlapping
entities, without burdening the model with the added
complexity of multi-training steps or label spar-
sity issues. Our scheme also works well for two
out of three categories listed in Table 2. The four
mentions in Multiple Overlapping Entities example
are merged into a single continuous concept, while
in Multiple Overlapping and Disjoint Entities ex-
ample, three entities are merged into two. These
merged concepts are successfully reconstructed into
the required mentions after our decoding process.

While our tagging scheme works well for these

†The number of overlapping entities is defined by the num-
ber of shared chunks.



Pattern 1 and 2 serve as the most effective patterns on SpecificInteraction and Precipitant, respectively

Figure 1: Dependency parse-based syntactic patterns

scenarios, our system is not completely free from
ambiguity. In case of category Multiple Disjoint
Entities present in the same sentence, the decoding
process does not work. However, this scenario ac-
counted for less than 4% of the observed instances
in our training data, resulting in a relatively low in-
formation loss which is a favourable trade-off for a
more lightweight effective tagging technique.

4.3 Syntactic Pattern Matching based
Decoding System

We employ a knowledge-injected syntactic pattern
matching methodology to extract overlapping irreg-
ular entities from merged concepts. First, given a
continuous span, we analyze the text to identify if it
is an irregular concepts, based on:

• the presence of a conjunction CCONJ in its de-
pendency parse tree

• the presence of a drug-mention (drug, namely
the label drug, its variant or Precipitant) in its
tokens

We use SpaCy parser (Honnibal and Johnson,
2015) to generate a dependency parse tree for each
mention text, and inject each token corresponding
to a drug-mention with isDrug = True. A drug-
mention knowledge base is constructed by extract-
ing the generic name and drug class for each la-
bel drug and Precipitant using RxNorm (Liu et al.,
2005) as a resource.

Next, we extract constituents from the identified
irregular concepts. We observe that overlapping en-
tities are expressed in a limited number of ways, and
thus we were able cover 89% of these entities with a
few syntactic patterns. This technique involves two
steps:

• Step 1: Identification of shared chunks, and
segment chunks from the continuous span,
where the tokens in the shared chunks are
shared across the irregular concepts, while the
tokens of the segment chunks are unique to
each.

• Step 2: Merging each shared chunk with each



segment chunk to form discontinuous spans.

For example, for the continuous mention span
P-gp and strong CYP3A inhibitors, the token in-
hibitors forms a shared chunk, P-gp is the first seg-
ment, and strong CYP3A is the second segment.
Once identified, the shared chunk is now merged
with each segment chunk to form two discontinuous
spans namely, P-gp | inhibitors and strong CYP3A
inhibitors.

Figure 1 shows two of our most commonly ap-
plied patterns. Specifically, Pattern 1 is applied on
SpecificInteraction, where the root of the sentence,
and its dobj (direct object) are extracted to form a
shared chunk, and each conj (co-ordinated token)
form individual segment chunks. Pattern 2 is ap-
plied on Precipitant. Here, each conj forms indi-
vidual shared chunks, while the root and lefts (left
immediate children) of the shared chunks form the
individual segment chunks. It should be noted that
in each chunk, the compound for each token is also
consumed.

Further, we follow the guidelines to remove any
drug-mention tokens that are a part of the predicted
SpecificInteraction. For example: In a predicted
SI text reduce lithium’s renal clearance, the token
lithium where isDrug = True, is simply removed, re-
sulting in the extraction of a disjoint entity reduce |
renal clearance.

5 Experiments & Results

Recently, transformer-based language models have
achieved state-of-the-art results in several NLP tasks
including Named Entity Recognition (Devlin et al.,
2018). In this process, the out-of-the-box pre-
trained language model BERT (Devlin et al., 2018),
is fine-tuned on the target task (NER task in our
case) and thus applies the learned encoded infor-
mation from pretraining on a huge corpus. Further,
BERT breaks down input words into sub-word to-
kens referred to as WordPieces (Schuster and Naka-
jima, 2012). These WordPieces are generated via
statistical analysis on a large corpus rather than us-
ing a morphological lexicon. Since we wish to em-
ploy the pre-trained language model, we continue to
use the WordPiece vocabulary utilized by BERT for
the fine-tuning task.

We split the provided dataset (211 SPLs) into 75%

Parameter Value

Learning Rate 1e-5
Number of epochs 20
Batch size 16
Dropout 0.1
Optimizer Amsgrad

Table 3: Experimental setup

(train), 15% (validation) and 10% (blind) of the data
for submissions 1 and 2; and 80% (train), 20% (vali-
dation) for submission 3. We perform a 5-fold cross-
validation for each mention type, thereby training 15
models (5 models per mention type).

Submission Train Size Task 1 Task 2
1 90% 0.6538 0.4903
2 90% 0.6462 0.4833
3 100% 0.6518 0.4839

Train size refers to the proportion of training data used per
submission.

Table 4: Official Test Data F1-Score

5.1 Sequence Labeling Model

We fine-tune the 24-layer, 1024-hidden, 16-head
BERT-Large, Cased model (Whole Word Mask-
ing) (Devlin et al., 2018) for each mention extrac-
tion task i.e. for Precipitant, SpecificInteraction and
Trigger. We use BERT to extract the contextualized
embedding for each token, and add a fully connected
layer on top of BERT to classify each token into the
mention type. Our experimental setup is shared in
Table 3.

The weights in all the layers of the model are up-
dated during training. The tokenization method fol-
lows Devlin et al. (2018), but for GPU memory con-
cerns, we set the token limit (after WordPiece tok-
enization) to 180 during training and 512 during in-
ference. We assign an O tag to each token outside
our limit. For a token split into several sub-tokens
after tokenization, we only consider the first sub-
token and ignore the rest, i.e. we only calculate the
loss for the first sub-token during training and take
the prediction of the first sub-token as the prediction
for the whole token.

Finally, we employ a Max-Voting system for



Category Precision Recall F1-Score
Task 1

Typed-Mentions* 0.734 0.589 0.6538
Precipitant 0.748 0.665 0.704

SpecificInteraction 0.664 0.358 0.466
Task 2

Relation Type 0.809 0.643 0.717
Pharmacokinetic 0.866 0.65 0.742

Pharmacodynamic 0.893 0.64 0.71
Unspecified 0.784 0.65 0.711

Typed-Interactions* 0.583 0.423 0.4903
Pharmacokinetic 0.711 0.568 0.632

Pharmacodynamic 0.563 0.365 0.434
Unspecified 0.551 0.429 0.483

* indicates the primary evaluation metrics.
Rows in bold specify the aggregated scores for the following rows.

Table 5: Breakdown of Test Data Scores for Best Submission

each mention type leveraging models generated dur-
ing the 5-fold cross-validation. This helps minimize
the variance in the predictions, balancing the ob-
served inconsistency in the training data.

5.2 Results & Analysis

Table 4 shows our official results, and Table 5 shows
a further breakdown of these results on the official
test data.

Our Submissions 1 and 3 employ the complete
syntactic dependency parse-based system, as ex-
plained in Section 4.3, as a post-processing recon-
struction step. Our Submission 2 applies only the
knowledge-injected token removal step. Our Sub-
mission 1 achieved the highest F1-score for Tasks 1
and 2.

In Table 5, Typed-Mentions is evaluated based on
the mention text, and Typed-Interactions is evalu-
ated based on the interaction type, its associated Pre-
cipitant text and effect, if present i.e. SpecificInter-
action text for Pharmacodynamic Interaction. Rela-
tion Type is evaluated based on the frequency of an
interaction type for a given sentence.

Overall, our system is more precision-oriented.
Based on a deeper error analysis, our common er-
ror categories and observations are as follows:

• Issues in exact Precipitant text extraction:
29% of the total number of predicted Precip-

itants have an overlap with the gold standard.
This includes cases such as,
gold = insulin lispro and prediction = insulin
lispro product; gold = serotonergic | drugs and
prediction = drugs that affect the serotonergic
neurotransmitter system; gold = preparations
containing sulfur and prediction = sulfur. Ad-
ditionally, the label drug variant removal step
introduced a few false negatives. These issues
further cascade, thereby negatively impacting
Task 2 primary evaluation metrics.

• Complexities in SpecificInteraction defini-
tion: Given that SI text is generally long, we
found a partial match between the gold stan-
dard and predicted text in 17% of the total in-
stances. For example: gold = electrocardio-
graphic changes | hypokalemia and prediction
= hypokalemia. As seen in Table 5, our SI
model suffers from a recall issue. On further
analysis, we observe that 11% of total SI in-
stances are discarded due to the absence of Pre-
cipitant for that sentence. Next, we observe that
TRIG-D recall is higher, thereby indicating that
a joint modeling between TRIG-D and SI could
benefit the overall recall for SI. This, in com-
bination with the complexity of SI definition,
made the overall SI extraction task more dif-
ficult. It should be noted that, while the num-



ber of training instances for SI is only one-third
as that for Precipitant, the number of irregular
concepts is three times higher.

• Errors in Precipitant cascading to Typed-
Interaction Evaluation: The errors in Precipi-
tant reported earlier further cascade to errors in
Typed-Interactions as shown in Table 5. This
is reflected by the difference in scores between
Relation Type, where we perform considerably
well, and Typed-Interaction for each interac-
tion type. We perform the worst in Typed-
Pharmacodynamic Interaction, since the errors
associated with SpecificInteractions are further
cascaded into the same.

6 Conclusion & Future Work

In this work, we describe our participation TAC
Drug-Drug Interaction Challenge 2019, where we
participate in Tasks 1 and 2. We demonstrate the ap-
plication of state-of-the-art transformer based tech-
niques for extracting mentions and relations. We
also propose a novel hybrid tagging methodology
for irregular concepts which is lightweight and over-
comes several limitations of other tagging schemes.
Our system proves to be effective as we achieve the
highest F1-score in the challenge. Our future direc-
tions include:

• Employing external knowledge bases (e.g.
UMLS, RxNorm) for identifying SpecificIn-
teraction and Precipitant mentions during the
NER prediction in addition to the post-
processing steps.

• Injecting knowledge of Precipitant and
Interaction-specific Trigger while training
SpecificInteraction NER model.

• Analyzing techniques to handle multiple dis-
joint entities to have a more robust tagging
scheme.

• Analyzing the effect of using a clinical data
specific WordPiece vocabulary, instead of gen-
eral domain WordPieces while pretraining and
fine-tuning transformer based language mod-
els.
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