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Abstract

This document describes SAMSON,
Raytheon BBN and partners’ system used
in the KB Construction and Hypothesis
Generation tasks of the 2019 TAC SM-KBP
competition. For KB Construction, SAMSON
performs entity linking and disambiguation
using vector embeddings of the KB. For
Hypothesis Generation, SAMSON uses two
different methods of relaxed querying. The
first method constructs spaces of hierarchical
clusters over various classes in the KB. We
then translate both the KB and the query
to cluster-level semantics and use a Prolog
meta-interpreter to run the query. The second
method uses local graph search to find KB
nodes similar to those requested in the query.

1 Introduction

This document describes the Semantic Abduction
over Multi-Source ObservatioNs (SAMSON) system
and associated research from the Raytheon BBN In-
telligence Exploitation (IX) group, partner Polaris
Alpha, and consultant Coherent Knowledge. The
SAMSON team entered our system in the 2019 Text
Analysis Conference (TAC) Streaming Multimedia
Knowledge Base Population (SM-KBP) track. The
long-running Text Analysis Conference (TAC) em-
phasizes empirical evaluation of competing systems
in various subfields of Natural Language Understand-
ing. SM-KBP also serves as an evaluation exercise
for performers on the DARPA Active Interpretation
of Disparate Alternatives (AIDA) program. SM-
KBP explores the problem of extracting content from
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large numbers (>1000) of multimedia (text, pictures,
video, speech) documents and producing a unified
knowledge base (KB) in which recurring entities and
events are co-referred. The track also explores the
problem of hypothesis generation, in which multi-
ple, mutually contradictory hypotheses (narratives)
explaining some event are identified in the unified
KB.

The SAMSON team and system participated in
two of the task areas (TAs) for SM-KBP 2019: TA2
(KB Construction) and TA3 (Hypothesis Genera-
tion). Our SAMSON system computes rigorous so-
lutions over datasets of over 100M triples in only a
few hours for TA2 and less than an hour for TA3. We
describe our participation in each TA in separate sec-
tions. Each section describes its task in more detail,
then presents the research and design of the relevant
part of the SAMSON system, and finally, offers a brief
discussion of experimental results.

2 Architecture

Figure 1 shows the SAMSON architecture and data
flow for TA2 and TA3. SAMSON uses a Java+Spring
front end API that also mediates between its core rea-
soning engines. These include the XSB Prolog rea-
soner [24], used for TA3 reasoning and TA2/TA3 se-
mantic translation; an array of Python/C data and
embedding tools used in TA2; the Polaris Alpha Men-
tieta Miner engine, used in TA3; and the Lucene text
indexing system, used in TA3.

3 TA2: KB Construction

To represent semantic data in all three task areas,
SM-KBP uses the AIDA Interchange Format (AIF),
a semantic ontology developed for the AIDA program
and written in OWL. TA2 (KB Construction), as-
sumes that TA1 (Extraction) has already processed a
large number (>1000) of multimedia documents, ex-
tracting and outputting a semantic data file in AIF
for each input document.

1



SAMSON (TA2+TA3)
PolarisAlpha 

Mentieta Miner

1

TA1 Outputs 
(OWL/AIF)

Reference KB 
(OWL)

AIF Ontology 
(OWL/AIF)

TA2 Clusters 
(OWL/AIF)

TA3 Hypotheses
(OWL/AIF)

Docker‐based 
interface

TA3 SMT of INFO 
NEED (XML)

Lucene Text 
Indexing

Python/C 
Embedding

XSB Prolog

Jena + Spring API

TA2 Clusters 
(OWL/AIF)

TA2 Inputs/Outputs

TA3 Add’l Inputs / 
Outputs

Figure 1: SAMSON high level architecture.

TA2 comprises two activities. First, TA2 performs
entity disambiguation (co-reference) between Knowl-
edge Elements (KEs), the Entity, Relation, and Event
(ERE) instances in the TA1 output files. Second,
where possible, TA2 performs entity linking, i.e. links
Entity instances with counterparts in an AIF Refer-
ence KB developed by the Linguistic Data Consor-
tium (LDC). By computing co-references and link-
ages, TA2 effectively integrates all the TA1 outputs
and the Reference KB into a single KB, which we
refer to as the Unified KB.

SAMSON’s TA2 pipeline uses state of the art
Python-based graph embedding to perform entity
linking and co-reference resolution of multilingual
text. XSB Prolog is used at various points in the
pipeline to perform semantic translations of the AIF
inputs and outputs. Embedding approaches map
data of various kinds to high-dimensional metric
spaces; the computed embedding supports gener-
alized similarity queries used to identify likely co-
reference and linking relationships.

3.1 TA2 Related Work

Several approaches perform entity disambiguation
and linking using embeddings [20, 9]. However, these
approaches process textual documents instead of se-
mantic graphs derived from the documents, as we do.

More similar to our problem and methods are ap-
proaches that produce embeddings of network struc-
tures, such as Attri2Vec [27], RDF2Vec [22], and
DeepWalk [19]. RDF2Vec processes RDF graphs,
producing embeddings of the graph nodes that pre-
dict existing edges. RDF2Vec predicts only edges in-
cident upon a node instead of edges in larger neigh-
borhoods. In contrast, Deepwalk uses unlabeled
graphs and attempts to predict target nodes ob-
tained from random graph walks starting at an input
node. Deepwalk represents graphs using sparse vec-

tors, making it incompatible with dense vector inputs
such as we obtained from fastText. Attri2Vec pre-
dicts randomly selected nearby nodes like Deep Walk
and uses expressive dense vector inputs representing
node attributes (e.g. name, type), but does not use
node neighborhoods in the input as SAMSON does.

Our system is novel with respect to all the above
work because we incorporate both node attributes
and neighborhoods into the input vector. This pro-
duces an embedding space that is sensitive to both
these features, making it possible to, for example,
differentiate among two instances of an event type by
their slot values.

3.2 TA2 System Overview

The core of our TA2 system is a pipeline of open-
source, Python-based toolsets for data processing,
embedding, and clustering. These include:

• Pandas: tabular data structures and analysis
tools [14]

• Apache Arrow/Parquet: a compressed, efficient
columnar data representation easily used in pan-
das

• NetworkX: a library for representing and manip-
ulating complex attributed networks.

• numpy: an efficient tool for manipulating and
storing multidimensional array data [15]

• FAISS: a GPU-accelerated similarity search and
clustering of dense vectors (at a billion-scale) [12]

• Scikit-learn: a library of efficient machine learn-
ing algorithms; we use the DBSCAN [6] and OP-
TICS [1] unsupervised clustering algorithms[18]

• PyTorch: a GPU accelerated deep neural net-
works and tensor computations library [17]

• fastText: pre-trained embedding models for mul-
tiple languages [3]. fastText uses subword infor-
mation to produce vectors for out-of-vocabulary
(oov) words
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Figure 2: SAMSON TA2 data flow.

• MUSE: a library for multilingual word embed-
dings based on fastText [4]

Figure 2 shows our TA2 pipeline. At the left, we
engineer AIF/Prolog (.P) data files that link Enti-
ties from the Reference KB with a reduced version of
DBpedia [2], thereby enriching these entities with ad-
ditional properties exploited by the embedding pro-
cess. The Reference KB’s origin as a translation of
Wikipedia to OWL makes linking it with DBpedia
a straightforward process of ID matching. To ensure
consistency with SM-KBP data, we also translate rel-
evant DBpedia classes to counterpart classes in AIF;
these class conversions are identifed by hand. This
enriched Reference KB is converted to Parquet for
easier Python-based processing.

In parallel, XSB converts TA1 AIF data to Prolog
(.P) format, which can be processed by both XSB
and Python. The python pipeline reads in the .P
files and converts to Parquet for easier Python-based
processing.

Next, the enriched Reference KB and the TA1 data
are separately processed by our graph embedding
pipeline. Our embedding scheme uses textual val-
ues derived from ERE names and classes as inputs.
To capture the shared meaning of linguistic word and
phrasal homonyms over different languages, we con-
vert textual values to embeddings using the fastText
and MUSE systems. Because the Reference KB is in
English, we use fastText embeddings; we use MUSE
to convert the multi-language TA1 data to English
embedding spaces.

We also add contextual meaning of the node in the
graph by performing a random walk of length l (in
our experiments l = 4) starting with the desired node
and averaging the fastText representations of each of
the nodes in the path. We repeat the random walk
k times (in our experiments k = 3) and we averaged
the resulting vectors. This process produces a 300
length vector that represents the context of the node
and is then appended to the fastText representation
of the node itself (which also has a length of 300).

The node representation then is a 600 length vector.

The resulting vector representations of the entities,
events, and relations are clustered using FAISS, DB-
SCAN, and OPTICS. Entities are linked to the re-
duced reference KB by using threshold based cluster-
ing. The resulting clusters are then written out to
a Prolog based representation and then transformed
into AIF using XSB.

3.3 FastText and MUSE

FastText provides pre-trained models for many lan-
guages allowing us to produce embeddings for out-of-
vocabulary words that we use as input for our own
embedding framework. These word embedding en-
code semantics of words (i.e. Kramatorsk and Kram-
atorsk Airport nearby in vector space). This enables
our system to handle noisy data.

There are a number of problems associated with
fastText. For example, fastText produces null (all
zeros) embeddings for words with character length
<2. Therefore, for short abbreviations such as US
and UK, we convert fastText inputs by hand, (e.g.
we convert ’US’ to ’United States of America’).

In addition, misspelled words are not always em-
bedded in a region similar to the correct spelled word.
Another issue we encountered is due to the way data
is passed between TA1 and TA2, there is no way to in-
corporate the context in which a given word was seen.
For example, the sentence that the word is found.

One disadvantage (common to all discussed) is that
fastText only produces a vector for words of length
greater than 2. If the string is 2 or less the vector is all
zeros. Therefore, for missing and small strings we end
up with a vector of zeros. Therefore, in some cases
such as abbreviations for the United States of Amer-
ica as in US we convert to United States of America.

FastText does provide pre-trained models for a
number of languages, however these models are not
aligned. Therefore, in order to produce vectors for
multiple languages aligned in a single vector space
we must use a method like MUSE. MUSE aligns the
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vector spaces in order to produce a new vector in the
target space. We used MUSE to align the fastText
vector spaces of Russian and Ukrainian to English.

By aligning the spaces we have representations of
words in the three languages closer together. An ex-
ample of English and Russian alignment is shown in
Figure 4.

3.4 Data Ingest

The first stage in our pipeline is data ingest. We
first convert TA1 AIF data into XSB readable .P
files which we then convert to attribute graphs us-
ing Python’s pandas and NetworkX libraries. An at-
tribute graph, a built-in NetworkX data structure,
is an unlabeled graph comprised of nodes/edges that
have named attributes that have some data such as
a string or vector.

We ingest all TA1 data files to produce one XSB
readable Prolog file containing one Prolog statement
for each TA1 AIF statement. In order to reduce the
size and ease the processing of TA1 data, we convert
it from reified, multiple statement form to a de-reified
form using XSB. Ingested and transformed Prolog are
shown in Figure 4.

In addition to the TA1 data, we also ingest the
Phase 1 Reference KB, reduce its size, and enrich it
with DBpedia. The Phase 1 Reference KB contains a
very large number of entities (in the millions) and a
large proportion of them are not relevant, mainly due
to the inclusion of all entities in the GeoNames [25]
dataset. In order to reduce the reference KB’s size we
merge the GeoNames references found in the Refer-
ence KB with DBpedia entities that have GeoNames
URIs. This merge reduces the Reference KB from
>10M statements to several hundred thousand state-
ments. To support use of the DBpedia entitues, we
manually align DBpedia’s ontology with AIF. DBpe-
dia has approximately 767 classes and AIF has 372.
Figure 5 shows a sample alignment.

3.5 Embedding Approaches

We developed three different embedding systems: a
baseline approach which relied only on fastText vec-
tors, a network embedding approach which uses a neu-
ral network to learn a vector representation based
on fastText input, and a graph embedding approach
based in part on the previous two approaches.

Baseline. Our baseline embedding system lever-
ages public word embedding models, particularly
fastText, which supports words in multiple languages
and similarity queries for out of vocabulary words us-
ing morpheme embeddings. Our prototype system
embeds TA1 KEs based on their textual values (has-
Name, textValue, numericValue). For each textual
value, we obtain a fastText embedding used as the fi-
nal embedding for the node. This baseline approach
obviously is only as robust as fastText, and often is
inaccurate for homographs (e.g. the same fastText
vector is produced for the soda Coca-Cola and the
movie called Coca-Cola).

Network Embedding. We also completed a pro-
totype of a more robust attributed network embed-
ding system that uses both node attributes and node
network (neighborhood) information. Our system is
based on Attri2Vec, a neural network algorithm that
learns an embedding for nodes that contain attribute
features, such as the fastText vectors of text or type
information. Attri2Vec incorporates both attribute
information and network structure in its learned vec-
tor representation and, like DeepWalk, uses a learn-
ing objective that predicts neighboring nodes.

We first convert our input RDF graph to an at-
tribute graph. For each node, we create one or
more attributes by obtaining fastText vectors for the
node’s type name and/or textual value. The at-
tributes for a node and for its neighbors are combined
via averaging and concatenation to obtain an overall
input value for the node. Given a node input of this
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smt( 'ta1:event_args/a11161.a11554', 'rdf:object', 'ta1:entities/a11161.a11554‘ ) . 
TA1 smt( 'ta1:event_args/a11161.a11554', 'rdf:predicate', 'ldcOnt:Life.Die_Place‘ ) . 

smt( 'ta1:event_args/a11161.a11554', 'rdf:subject', 'ta1:events/IC001IAKD/nlplingo/nl-201‘ ) . 

de-reified smtR('ta1:event_args/a11161.a11554‘, 'ta1:events/IC001IAKD/nlplingo/nl-201‘, 'ldcOnt:Life.Die_Place‘, 'ta1:entities/a11161.a11554‘ ) .

cluster-
level smtC( 'ta1:event_args/a11161.a11554', 'ta1:events/IC001IAKD/nlplingo/nl-201', pr(conflict,loc), en(str("Georgiev",1),physicalM), 0.77 ) .

Figure 4: Transformation of a reified TA1 edge (in AIF) to de-reified and cluster-level representations. The colored
boxes track the evolution of individual edge elements. The cluster-level representation is used in TA3; its last element
is a confidence value.

form, the neural network learns to predict the oc-
currence of neighboring and nearby nodes chosen via
random walks. The learned neural layer immediately
prior to the output represents the node embedding.
More formally we have the following:

f(xi) = ReLu(xiW
in)W out

where xi is the fastText feature vector of node vi in
the graph, W in are the input weights, W out is an
embedding layer. We train using a negative log loss
function using the Adam optimizer in PyTorch. We
perform negative sampling by selecting K+ 1 output
weights where the first index is the neighboring node
and the other K are indices corresponding to noise
nodes as used in [27]. The objective is to predict
the neighboring node and once trained we are able
to produce vector representations by using the input
weights W in.

Graph Embedding. Our current implementa-
tion of the Network Embedding approach requires
very long training time (>12 hours) for the sizable
SM-KBP TA1 data inputs. Furthermore, to com-
plete even these runs, even using modern GPUs, we
are forced to reduce the learned embedding vector
size, resulting in poor performance in which node
context is largely lost. Therefore, for the SM-KBP
evaluation, rather than attempting to learn a node

embedding representation, we use the input into the
network embedding neural network as the represen-
tation. This enables us to both retain the contextual
information of the node and improve the speed of ob-
taining the embedding for each node. However, this
representation only imperfectly expresses the seman-
tic differences between nodes.

3.6 Clustering

Density based spatial clustering of applications with
noise (DBSCAN) is a clustering technique that clus-
ters KEs based on a user supplied density thresh-
old. Figure 6 presents a simple illustration of the
DBSCAN concept in two dimensional space. Each of
the KEs (dots, triangles, squares) are mapped into
this 2-D space. Pairwise distances are computed us-
ing the afficient FAISS algorithm. A KE (named p)
is chosen and the number of points within a defined
distance threshold, ε, are counted. If there are more
than a minPoints threshold KEs around p and within
distance ε, then p is a core point (dot). All KEs
within ε are clustered into a single cluster. Multiple
KEs can be core points within this cluster. Any other
KEs (triangles) within ε of any core point in a clus-
ter are included in the cluster. KEs that are further
away than ε from a core point are not included and if
further away than ε from all core points then they are
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Figure 6: KE clustering in DBSCAN based on the minimum distance threshold and a minimum number of points
threshold. Red dots are core points indicating that they meet or exceed the minPoints threshold within the distance
threshold.

considered as noise (squares). This process iterated
until all KEs belong to either a named cluster or are
assigned to the noise cluster.

Ordering points to identify the clustering structure
(OPTICS) is a clustering algorithm that relaxes the
density requirement of DBSCAN. The basic idea is
that by relaxing the density requirement, relevant
small clusters can be assigned that would be other-
wise missed in using density based thresholds. In
OPTICS, distances between all points are calculated.
The KEs are then reordered so that spatially close
points are neighbors after the ordering. We use a
minPts-based threshold, i.e. the core distance (ε) of
point p is determined by the smallest distance such
that p meets the minPts threshold. The reachability
distance between a point q and p is the minimum of
either the core distance, ε, or the distance from p to

q. This process iterates until all points are processed.
Clusters are formed from sets of points with shorter
distances.

3.7 Co-Reference

Entity linking is performed between a reduced
Phase1Eval KB and TA1 entities using FAISS (fast
distance calculation) to perform threshold based clus-
tering. The entities that fall outside the threshold are
not linked to a reference KB entity and thus become
part of a NIL Cluster. We create NIL (non-linked)
Clusters using DBSCAN with entities that fall out-
side the threshold. We create singleton clusters from
DBSCAN noise entities. This process is illustrated in
Figure 7.

Unlike entities, events and relations are not linked
to a reference KB, and so do not require threshold
based clustering. Instead, we use OPTICS to cluster
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Phase1Eval Ref KB
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Ukraine

Ref KB Entities

TA2 Threshold 
Cluster

TA1 Entity 
Embeddings
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* Actually 600‐dimensional space, but only
showing projection into 2‐D

Figure 7: Linking and entity disambiguation using the embedding space.
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co-referent events and relations.

3.8 TAC 2017 V-measure Results

We tested our SAMSON-TA2 using the V-measure
[23] cluster quality metric. V-measure measures the
similarity between a gold standard cluster set and a
test cluster set. For the gold standard set, we used
the TAC 2017 TA2 clusters published by LDC; we ran
TAC 2017 TA1 outputs provided by the BBN TA1
team through our system to obtain a test cluster set.

Because V-measure assumes that the gold and test
clusters operate over identical instance sets, we first
had to identify a common set of Entity instances
found in both the BBN TA1 and LDC gold data.
For this purpose, we assumed that Entities from the
two datasets that had common types and overlapping
textual justifications were the same Entity instance.
There are 24,373 Entity instances in the LDC gold
dataset and 7,524 in the BBN dataset. Using the
matching method described above, only 1,875 En-
tity instances (7.693% of the gold instances) occur
in both datasets; we ran the V-measure metric us-
ing only these instances and their associated clusters.
We obtained a V-measure score of 0.98008 with a ho-
mogeneity of 0.99957 and a completeness of 0.96134.
Therefore, 98% of the found Entity elements were
correctly co-referenced. However, the vast majority
of these were singleton clusters.

3.9 TA2 Future Work

We have a number of future work headings to improve
our embedding based TA2 approach. We intend to
address one of the failings of fastText by incorporat-
ing MOE (Misspelling Oblivious (word) Embeddings)
to handle misspelled words. Also, in order to improve
our clustering results we intend on incorporating au-
tomatic parameter tuning and more formal analysis
of our choice in clustering algorithms. This will be
a great improvement as our current approach is to
hand tune the parameters in order to reduce runtime
and increase the number of clusters generated.

Additionally, we will leverage sentence embeddings
to produce KE embeddings. In particular, we hope

to experiment with BERT/XLNet as a replacement
of fastText [5, 26]. Our new approach would convert
random walks through TA1 graph into a sentence,
which can then be queried using BERT/XLNet for
context sensitive word embeddings that represent the
KE element in the graph.

In addition to improving our KE embeddings we
hope to use our embeddings to predict missing infor-
mation. To do so we will use BERT’s masked lan-
guage model to predict missing words/entities in the
sentence constructed from a graph. We will seek to
speed up training by performing transfer learning us-
ing a pre-trained BERT model along with a subset of
TA1 data.

4 TA3: Hypothesis Generation

4.1 SINs and Hypotheses

TA3, Hypothesis Generation, assumes TA2 has al-
ready produced the Unified KB and attempts to iden-
tify multiple hypotheses in the Unified KB that an-
swer a given Statement of Information Need (SIN), or
semantic query. In keeping with the Semantic Web
representation used by SM-KBP, a SIN is represented
as a set of entry points and edges somewhat similar
to a SPARQL [21] query; Figure 8 shows a portion of
a SIN used in SM-KBP. Like a SPARQL triple pat-
tern, each SIN entry point or edge contains one or
more variables. One query answer (hypothesis) finds
ground versions of these edges in the Unified KB, im-
plicitly binding edge/entry variables to nodes in the
Unified KB.

However, a hypothesis answer has several differ-
ences from a SPARQL answer. First, SPARQL rep-
resents answers as sets of bound variables that im-
plicitly represent edges in a data graph. In contrast,
a hypothesis answer simply returns the data graph
edges themselves. Second, SPARQL has a rigid logi-
cal semantics that requires all variables to be bound
consistently and all data edges to match the given
triple pattern. In contrast, a hypothesis answer al-
lows arbitrary relaxation of the answer edge, such
that the answer edge may not match the SIN edge
at all! This flexibility is required because error-prone

<!‐‐ Mykola Serhiyenko (a.k.a. Nikolai Sergienko) ‐‐>
 <entrypoint>
    <node> ?DeceasedSerhiyenko </node>
    <typed_descriptors>
      <typed_descriptor>

<enttype> PER.ProfessionalPosition </enttype>
<kb_descriptor>
<kbid> LDC2019E43:80000112 </kbid>

</kb_descriptor>
      </typed_descriptor>
    </typed_descriptors>
  </entrypoint>

<!‐‐ Who carried out the killing of Mykola Serhiyenko? ‐‐>  
  <edge id="AIDA_M18_TA3_E101_F1_E1">
    <subject> ?DeathOfSerhiyenko </subject>
    <predicate> Life.Die.DeathCausedByViolentEvents_Victim </predicate>
    <object> ?DeceasedSerhiyenko </object>
  </edge>
  <edge id="AIDA_M18_TA3_E101_F1_E2">
    <subject> ?DeathOfSerhiyenko </subject>
    <predicate> Life.Die.DeathCausedByViolentEvents_Killer </predicate>
    <object> ?KillerOfSerhiyenko </object>
  </edge>

Figure 8: Selected entrypoint and edges from a Statement of Information Need (SIN).
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TA1/TA2 linguistic processing (e.g. typing errors,
missed extractions) may produce a noisy unified KB
whose edges only partially match the SIN edge.

The final difference between hypothesis answers
and SPARQL answers is that the hypothesis must
also include a set of coreference clusters and Refer-
ence KB linkages for each node included in an answer
edge. Ideally, the cluster/linkage requirement would
allow hypotheses to express that the same entities and
edges were encountered in multiple input documents,
allowing a user to trace the hypothesis back to all
the documents that support it. However, because of
the difficulty of gathering and co-referring all possible
supporting evidence in formats acceptable to NIST,
our team simply made singleton clusters for this sup-
portive evidence, effectively returning only one of po-
tentially many instances of the hypothesis pattern in
the supporting data.

SIN entry points are a special case of the above
matching process. The function of entry points is to
bind a single variable found in some SIN edge, thereby
constraining the hypothesis answers that should be
returned. While several different forms of entry point
were specified by NIST, Phase 1 used only Reference
KB entry points, so we limit our discussion to these.
A Reference KB entry point consists of an edge vari-
able, a name string, and an ontology class. To pro-
cess this entry point, a TA3 system should find some
node in the Reference KB whose name matches the
given string and whose class matches the given class;
the variable is then bound to the node. As with all
other matching functions in TA3, the TA3 system has
the discretion to determine what nodes successfully
match the entry point.

4.2 SAMSON-TA3 Goals and Ap-
proaches

Goals. The SAMSON-TA3 system design achieves
a number of goals. First, the design addresses
a problem of failed queries encountered in earlier
evaluations. Because TA1/TA2 linguistic process-
ing is noisy and incomplete (i.e. fails to extract
EREs present in the data), a naive query engine
running a SIN query will often fail to find any
answers. This is often the result of some ERE
being mistyped: for example, an event of type
Conflict.Attack.FirearmAttack in the text might be ex-
tracted with the type Life.Die.DeathCausedByViolentEvents

instead. Because TA1 extracts entities, events, and
relations, any of these might be mistyped, so a SIN
query looking for a particular type might not find it
in the data. To ameliorate this problem, SAMSON-
TA3 performs relaxed queries, in which the original
SIN query is relaxed in order to match a wider range

of data.
Second, SAMSON-TA3 is designed to find a variety

of distinct, mutually inconsistent hypothesis answers,
in keeping with the scoring metric of SM-KBP. Each
hypothesis may share edges with another hypothesis,
indicating some factual overlap, but each hypothesis
must also contain at least one edge not found in the
other hypothesis.

Third, because the space of potential hypotheses
is large, SAMSON-TA3 is designed to be scalable,
capable of traversing millions of distinct hypotheses
in less than a minute.

Finally, SAMSON-TA3 is biased to find hypothe-
ses that are connected graphs. While not strictly re-
quired, this causes SAMSON to find hypotheses that
are more coherent, compact, and informative. For ex-
ample, SAMSON might discover hypotheses in which
multiple victims are slain by the same killer, which is
likely to be illuminating for the end user.

Approaches. SAMSON-TA3 implements relaxed
hypothesis queries using two different approaches.
The first, developed by Raytheon BBN, uses hierar-
chical similarity clusters to find nodes that are similar
to the node asked for by a SIN. The second relaxed
query approach, developed by partner Polaris Alpha,
uses a process of beam-constrained local search to
discover nodes similar to those asked for by a SIN.
We have substantially completed a Dockerized inte-
gration of the two approaches, but for TAC 2019 they
operated separately, producing alternate outputs for
SINs. We describe each approach in detail next.

4.3 TA3 Related Work

Substantial literature exists on relaxation of queries.
Most relevant to our work are recent publications on
RDF query relaxation. These works all explore re-
laxations of RDF queries for the purpose of finding
answers that are similar to what was asked for. We
are not aware of a work using hierarchical clustering
to structure data similarity relationships as we do.

[7] uses clusters to organize query relaxations;
these are defined either using ontological relax-
ation (e.g. replacing Professor by the cluster
{Teacher,Researcher} or by substituting node prop-

Table 1: Hierarchical cluster spaces used in SAMSON.

Cluster Space Data Type Computation Method

String Names Agglomerative clustering using Lucene

Classes Analytic

Property Classes Analytic

Times Analytic

GeoNames Places Agglomerative clustering

Entities Derivative: combine string name and class

Events and Relations Derivative: combine multiple slot values
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C1: {“Putin”} conf: 1.0

C2: {“Mr. Putin”} conf: 1.0

C3: {“Putin”,”Mr.Putin”} conf: 0.75

C4: {“Putin”, ”Mr.Putin”, 
”Pootie”} conf: 0.6

C5: {“Putin”, ”Mr.Putin”, 
”Pootie”, ”Jozef Putin”} 
conf: 0.4

pr(Conflict.Attack.FirearmAttack,attacker) conf: 1.0

pr(Conflict.Attack,agent) conf: 1.0

pr(conflict,agent) conf: 0.4

pr(event,agent) conf: 
0.4

pr(Conflict,agent) conf: 0.6

(a) (b)

Figure 9: Hierarchical cluster spaces for (a) name strings and (b) AIF events. The former is defined using agglomer-
ative clustering; the latter is defined analytically.

erties for nodes and then relaxing the properties (e.g.
Directors the same age as Steven Spielberg). [10] re-
laxes queries by replacing individual nodes with re-
laxed values, either by ontological relaxation or by
node variabilization (substituting a variable for some
query node). Like ours, this work scores the relax-
ation based on similarity; their scoring is based purely
on ontological distance. [11] relaxes queries using on-
tological relaxation, node variabilization, or by break-
ing join dependencies between variables. Like our
work, [8] defines data-specific similarity spaces deter-
mined algorithmically and scoring systems.

4.4 BBN Hypothesis Generation

BBN’s Hypothesis Generation process, which is im-
plemented entirely in XSB, uses relaxed queries over
cluster-level statements.We first organize Unified KB
nodes into hierarchical similarity cluster spaces of
various types shown in Table 1. Next, we translate
Unified KB edges to a cluster-level form, replacing
each node in the edge with a cluster from the ap-
propriate cluster space. We similarly translate the
SIN to a cluster-level form. In effect, the resulting
query relaxes the original SIN by looking not for some
node or type mentioned in the SIN, but instead for a
cluster containing that node or type. Here, clusters
represent sets of items having some similarity to the
original item.

4.5 Hierarchical Cluster Spaces

Hierarchical clusters are a well-known method of ex-
pressing degrees of similarity between any two items
in a given set. We construct clusters using simple
agglomerative clustering methods that initially place
each item in its own singleton cluster and then repeat-
edly merge clusters based on inter-cluster distance.
Each distance metric is specific to that cluster type.
We describe details of each cluster type next.

String Names. We construct a hierarchical clus-
ter space of all string names found in the Unified KB

or in the Reference KB. First, we use Lucene text in-
dexing to find scored matches between similar strings.
We use Lucene’s Damerau-Levenstein similarity with
a maximum of 2 swaps as an initial blocking method.
Prospective string matches are then evaluated using
the more expensive Daro-Winkler metric. For each
string we find its 20 most similar strings.

We construct hierarchical clusters by first creating
a singleton for each string and then iterating through
*all* scored matches in score order. For each match
and its associated pair of strings, we merge the two
clusters containing those strings. Each new cluster’s
similarity score (a measure of intra-cluster similarity)
is the average of all match scores used in its produc-
tion. Singleton clusters are given similarity 1.0. This
process creates a tree-shaped cluster space in which
singletons are at the bottom, the most similar strings
are next highest, and larger, lower-similarity clusters
are created at each next higher level. For example,
as seen in Figure 9(a), the string ”Putin” might be
a member of multiple different clusters of decreasing
similarity going up the tree. [technically, a forest]

Classes. We construct a cluster space of
AIF classes analytically, without computing explicit
matches or similarity relations between classes. We
construct the following event cluster levels and insert
AIF event classes in the appropriate clusters:

• top-level category (e.g. event, which contains all
events)

• event sub-category (e.g. conflict, which contains
all conflict-oriented events)

• three levels of prefix-oriented clusters whose
members all share that prefix:

– (e.g. Conflict)
– (e.g. Conflict.Attack)
– (e.g. Conflict.Attack.FirearmAttack)

We construct Entity and Relation class cluster spaces
analogously. Cluster intra-similarity scores use a
semantic intuition of a probability that two nodes
whose classes are in the same cluster are actually
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the same entity in the world: for example, an intra-
similarity score of 0.3 would mean a 30% chance of
identicality. These probabilities are currently engi-
neered, but future work could derive them from data.

Property Classes. Property classes are
also constructed analytically. LDC Ontology
properties mix information about event/re-
lation classes and their slots: for example,
Conflict.Attack.FirearmAttack Attacker refers to the
Attacker slot of a Conflict.Attack.FirearmAttack event.
We therefore construct a cluster space in which
both the class component and the slot component
of the property are progressively abstracted. Each
property cluster has the form pr(CLASS,SLOT). For
each ontology property P having class C and slot
S, we make a property cluster for each class cluster
CLASS containing C. For singleton property clusters,
SLOT = S; the value of SLOT for larger clusters are
abstracted using engineered categories. For example,
in Figure 9(b), we see all the property clusters
containing Conflict.Attack.FirearmAttack Attacker.
At the higher levels, the Attacker slot value is
abstracted to the more general agent.

Times. Time cluster are constructed analytically
to form a cluster space in which the times are less
and less similar. For example, singleton clusters con-
tain exact times, while the next level upward cap-
tures times whose year, month, day, and hour are all
the same, but whose minute can be different. The
next level captures times with only the same year,
month, and day, and so on. These granularity judge-
ments are a first cut; more subtle temporal divisions
(e.g. three-day periods) might be more useful. Since
explicitly constructing a cluster for every second in
human history is infeasible, we generate only those
clusters containing some time mentioned in the Uni-
fied KB.

Places. We cluster all places in the Reference KB
using their Lat-Long information and simple spatial
distance to determine cluster merges. We finished
this cluster space, but did not finish code that would
reason about it for Phase 1.

Entities. Entity clusters are defined analytically,
based on the entity’s class and name string. For ex-
ample, the entity named ”Russia” is a member of the
singleton cluster en(str(”Russia”,0), GPE-Country.Country)

. We define an entity cluster en(STRCL,CLASSCL)

at level k for each STRCL and CLASSCL that
are at level k in their respective cluster spaces.
We actually explicitly construct only those en-
tity clusters that are non-empty, e.g. the cluster
en(str(”Putin”,0), GPE.Country.Country) has no members,
so we do not construct it. This space therefore or-
ganizes entities into clusters having less name and

type similarity as the cluster grows larger.
Events and Relations. We implemented cluster

spaces for Events and Relations based on their
types and slot values, e.g. we mode a singleton
event cluster whose abbreviated form might look like
ev(Conflict.Attack,Person,Person,Tblisi,03/15/04,03/16/04) .
For SM-KBP, we did not reason using these clusters
because of the difficulty of rigorously handling
missing slot values. This problem is analogous to
the problem of handling missing data in embedding
computation; we plan future work to address it.

4.6 Translating Data and SINs to the
Cluster Level

Our approach for exploiting hierarchical clusters in
relaxed queries is to translate de-reified edges from
section 3.4 to a cluster-level form. Cluster-level trans-
lation replaces an edge node (i.e. a predicate or an
Entity) by a cluster that node is a member of. Figure
4 shows a sample translation of a de-reified edge to
the cluster level.

We create multiple, alternate cluster-level trans-
lations of each edge by replacing edge nodes with
clusters of varying abstraction. Each KB node is a
member of a series of progressively larger clusters.
Since the series can be quite long, it is infeasible
to, for example, replace the node representing Russia
with all the entity clusters it is a member of. In-
stead, we choose a small number (k = 4) of similarity
thresholds for each cluster space that are of interest.
For each node n and threshold tk, we then find the
(unique) cluster having lowest intrasimilarity that is
still higher than tk. Because cluster intrasimilarity
monotonically increases as one goes from a cluster
space leaf towards a root, it is straightforward to find
this cluster. Using these methods, we therefore ob-
tain a sequence of k clusters containing n that are of
increasing size and decreasing similarity.

Armed with these node memberships, we translate
de-reified edges. For each edge e = n1, n2, n3, we
create k ∗ k ∗ k translations of e by systematically re-
placing each of n1, n2, n3 with each of the k clusters
found for it in the prior step. Each cluster-level edge
can be seen as a relaxation of the original node-level
edge; we capture the degree of relaxation by averag-
ing the intra-similarity scores of the clusters used in
the edge. The new cluster-level edges are gathered
in a Unified Cluster KB that is k3 as large as the
original Unified KB.

For example, in Figure 3.4, we replace the predi-
cate and object nodes from the de-reified edge with
clusters (the subject node is an Event, which we
do not cluster at present). The predicate node,
ldcOnt:Life.Die Place, is replaced with the property clus-
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ter pr(conflict,loc), which is the set of AIF proper-
ties specifying the location of some conflict-oriented
event. The object node, ta1:entities/a11161.a11554,
an Entity, is replaced with the Entity cluster
en(str(”Georgiev”,5),physicalM), which is the set of enti-
ties of medium physical size whose name is sufficiently
similar to ”Georgiev”.

For this approach to successfully answer queries,
the original SINs must also be translated to cluster
level form. This is straightforwardly done by translat-
ing the node bindings obtained for SIN entry points
to a series of k cluster bindings; the clusters are ob-
tained using the same process used for KB edges.

4.7 Executing the Relaxed Query

Once both the Unified KB data and the SIN are
translated to cluster form, we execute the relaxed
query in order to generate hypotheses. This query
is executed by a meta-interpreter written in XSB.
The meta-interpreter runs on top of XSB’s built-in
interpreter (query engine) and reimplements selected
portions of it for additional control. In this case,
the meta-interpreter adds multiple special features.
Unlike the built-in interpreter, which fails when no
match for a SIN edge is found, the meta-interpreter
continues looking for matches to the rest of the SIN
edges. This feature relaxes the original query by, ef-
fectively, allowing parts of it to fail, and returning
what matches can be found in the data. This par-
tial matching strategy is necessary to deal with noisy
and missing TA1+TA2 data. Additionally, the meta-
interpreter performs the translation upon the input
SIN described in the prior section. Finally, the meta-
interpreter scores every successful answer (hypothe-
sis) and maintains a list of the n best hypothesis an-
swers. We describe the scoring function in the next
section. Overall, the meta-interpreter approach al-
lows us to exploit XSB’s very powerful query and
unification engine, capable of finding millions of hy-
pothesis answers in minutes, while still customizing
the portions of the query process described above.

4.8 Scoring and Translation to RDF

The final phase of our pipeline converts the cluster-
level hypthesis edges back to node-level edges and
then processes these for final output. Conversion of
cluster-level edges back to node level begins by replac-
ing entry point clusters with the original entry point
node bindings. Next, for each cluster-level edge, XSB
looks for an edge from the Unified KB that: (i) is con-
sistent with any existing bindings of SIN variables to
nodes; (ii) that contains nodes that are members of
the appropriate clusters in the cluster-level edge. In
some cases, no edge satisfying (i) can be found, in

which case any edge satisfying (ii) is selected (be-
cause of the translation and query process, such an
edge always exists). Once the node-level edges are ob-
tained, final output processing assembles supporting
information from the Unified KB for each hypothesis
answer and outputs the hypothesis edges, supporting
information, and associated clusters in one RDF file.
XSB’s built in queries are an efficient method of gath-
ering and massaging this information to meet NIST’s
requirements. At this stage, to meet NIST’s require-
ments, we generate singleton (co-reference, not hier-
archical) clusters for every edge in the hypothesis out-
put. Our processing currently entirely ignores TA2’s
coreference cluster outputs because we could not co-
herently integrate them with our hierarchical cluster-
ing system.

Our scoring system evaluates each generated hy-
pothesis and optimizes for the four SM-KBP hypoth-
esis objectives of correctness, relevance, semantic co-
herence, and coverage. We constrain our approach
to be fully correct (i.e. all our returned edges have
a TA1 justification). However, we generate varying
quality levels for the other three metrics; we optimize
for them using the following scoring function, which
we explain in detail:

SH =
∑
e∈H

kSeen ∗ Confe/Freqe

To promote overall relevance to the SIN, we pro-
mote complete hypotheses by awarding each hypoth-
esis a score for each returned edge e (i.e. each edge
matching some SIN edge).

A returned edge may be only partially relevant,
in that it matches a relaxed version of the original
SIN edge. Furthermore, pairs of returned edges may
not be semantically coherent because of the relaxed
translation described earlier, which does not always
enforce shared bindings. Our scoring metric captures
both of these imperfections by incorporating the de-
gree of SIN relaxation Confe that was required to
find matches in the data. Here, Confe ranges be-
tween 0.0 (relaxed, less confident, bad) to 1.0 (exact,
more confident, good).

Confe = avg(Confs, Confp, Confo)

Confidence is computed simply by averaging the
confidence (intra-cluster similarity) values associated
with the cluster-level subject, predicate, and object;
these are taken directly from the cluster spaces de-
scribed earlier.

We promote coverage by penalizing hypotheses for
using bindings (KB nodes) used by other hypotheses
in the k-best set. For each distinct predicate and
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object node found in any hypothesis in that set, we
tally Freqp [Freqo], its number of occurrences in all
hypotheses in the set. At scoring time, we penalize

each hypothesis edge by Freqe, which expresses the
frequency of the edge predicate and object.

rdf:Statement
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ldc:assertion-21551
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Figure 10: Hypothesis statements in graph form generated by SAMSON using relaxed querying over cluster-level
statements. Blue boxes are nodes from the Unified KB. Green boxes are confidence values generated by SAMSON.

Figure 11: Architecture for Mentieta Miner, Polaris Alpha’s Hypothesis Generation engine.
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Freqe = avg(Freqp + Freqo)

Finally, we promote more internally compact, con-
nected hypotheses by offering a score bonus kSeen

when s, p, or o for an edge are also seen in another
edge from the same hypothesis.

4.9 Polaris Hypothesis Generation

Polaris Alpha’s Hypothesis Generation approach,
named Mentieta Miner and shown in Figure 11, has
five major components:
• Information Need Source (INS): This simple

component receives XML-based INs, processing
them to ensure they are well formed. This com-
ponent can be configured to either receive INs
via Kafka messaging or via text file. For the re-
cent Month 18 (M18) test event, IN files were
processed.
• Information Need Processor (INP): This Docker

component converts INs into internal data struc-
tures and queries for relevant entry point and
frame edge data. This component is described
in more detail below.
• Hypothesis Generation Component (HGC): This

Docker component receives processed INs from
the Messaging Service and searches for data that
can be used to create connected, consistent result
graphs that resolve as much of an associated IN
as feasible.
• Data Store (DS): Due to the limited scope of the

M18 exercise, evaluation data was loaded into
a local GraphDB datastore [16]. Test runs were
executed using TA1+TA2 datasets from Linguis-
tic Data Consortium (LDC), BBN, and CMU-
OPERA. In future exercises, the local datastore
will be replaced with a data service provided by
the TA2 performer(s).
• Messaging Service (MS): This Kafka messaging

service provides support for internal and ex-
ternal communications. Wrapped in a Docker
container, Kafka (Apache Software Foundation,
2019) was selected to provide a scalable, fault
tolerant, and operational communications infras-
tructure.

As shown in the figure, Metieta Miner components
are wrapped in Docker containers and are configured
using Spring. Docker simplifies Metieta Miner distri-
bution, while Spring simplifies algorithm configura-
tion.

4.10 Information Need Processor
(INP)

Hypothesis Generation begins with the Information
Need Processor. After verifying that a SIN has the

proper syntax and structure via the INS, it is passed
to the INP for initial processing. The SM-KBP eval-
uation plan treats multiple SIN frames as separate
queries, so the INP first separates frames and oper-
ates on them individually.

Each frame has one or more sets of edges with
shared subjects or shared objects, as seen in Figure
8, where the edges share a common subject. The
INP attempts to resolve as much of a SIN as possible
via direct query. After converting to an internal data
structure, the INP first attempts to resolve as many
entry points as possible. For example, the entry point
shown above for ?Sniper1 will be translated by the INP
into a SPARQL query designed to retrieve a matching
entity from the DS. If a matching entity is found, the
INP will extend the entry point data to include any
members of an (TA2-generated) AIDA:SameAsCluster to
which that entity may belong along with supporting
structures. Any member of an entry point entity’s
SameAsCluster may be used during the next phase of
INP processing.

The second phase of INP processing involves at-
tempting to link one or more entry point SameAsCluster

members with instances of an event or relation ref-
erencing that entry point as part of an IN frame
edge. For example, we may find one or more
Conflict.Attack.FirearmAttack event instances with a de-
fined FirearmAttack.Attacker relation linked to entities
who are members of the resolved ?Sniper entry point
SameAsCluster. Like entry point processing, resolved
frame edge entity SameAsClusters are retrieved along
with any members belonging to those clusters.

Finally, to cast a wider net, semantic softening is
applied in which the ontological class structure is used
to find semantically similar events to those requested
in an IN. Because the AIDA ontology is relatively
flat, we’ve explored adding local extensions that allow
us to link, for example, Conflict Attack with Death
By Violent Means. Semantic softening is limited to
parent and siblings only provided the parent type is
not Event or Relation. Semantically softened queries
were modeled similarly to those proposed by Lin [13].

4.11 Hypothesis Generation Compo-
nent (HGC)

Initial hypotheses are formed by taking the cross
product of unique entry point SameAsCluster groups
with unique resolved frame edge cluster groups. Each
hypothesis is then scored. After this initial process-
ing is performed, a search algorithm is used to fully
connect the hypothesis graph if needed.

The HGC implements a beam-limited global search
algorithm to search for knowledge structures that can
be used to connect hypothesis subgraphs together in
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a logical, well-founded way. Given a hypothesis and
an information need, the HGC will attempt to link
hypothesis subgraphs together using graph structures
queried from the Data Service. A configurable mul-
tivariate scoring mechanism is used to create a score
(cost) vector for each hypothesis, with the search en-
gine using a greedy approach to select and expand the
highest scoring hypotheses until a termination condi-
tion has been reached.

The HGC consists of five major subcomponents:

• Graph Search Message Consumer: This subcom-
ponent receives IN data via Kafka and creates
local tracking information.
• Graph Search Content Deserializer: This sub-

component builds a search context including the
maximum search depth, beam width, branching
width, and search termination strategy. The
search termination strategy defines the search
algorithm’s termination condition: search until
a maximum recursion depth has been reached,
terminate when a solution (connected hypoth-
esis graph) has been found, or a recursion limit
has been reached (whichever occurs first). Other
search context elements are described subse-
quently.
• Graph Search Engine: : The search engine uses

the search context along with a multivariate
scoring function to guide and control the search.
In case no hypotheses can be extended into a
solution (a connected graph resolving all frame
edges), the Search Engine will return the best
solutions found so far to through the Messaging
Service to the BBN search engine to see if they
can be extended to full solutions using the BBN
engine.
In addition to the best solutions list, the Search
Engine uses a score-sorted queue to keep track of
partial solutions (hypotheses) and their scores.
Hypotheses from this queue are extended by
the Search Engine to find full solutions. The
search context beam width parameter controls
at each stage of processing the number of partial
solutions pulled from the queue for expansion.
For each hypothesis pulled from the queue, the
Search Engine extends the hypothesis by find-
ing graph structures from the DS that can be
fused to the hypothesis structure. The search
context maximum branching parameter is used
to control the number of child hypotheses cre-
ated from a given parent. Each child is scored
using a multivariate scoring function and added
to the score-sorted queue. Each hypothesis is
then scored for confidence, completeness, con-
nectedness, and semantic similarity to the frame

Figure 12: Mentieta Miner search strategy.

edges requested in the IN. Consistency is not yet
included in the scoring process but is planned for
future releases.
As each child hypothesis is created and scored,
an extraction function is used to check if the re-
sulting child is a solution to the IN. If so, it is
passed to the Search Engine Serializer for trans-
mission to the BBN component. Note that new
scoring functions and associated weights can eas-
ily be added through Spring integration, and the
size of the queue can be controlled via a search
strategy parameter. The original IN is available
to the Search Engine as needed. Search engine
operation is graphically depicted in Figure 12.

• Search Engine Serializer: This subcomponent
translates full and partial solutions from inter-
nal representations into an internal JSON repre-
sentation and serializes the data for transport.
Note that the internal representation is rela-
tively spartan; structures required by DARPA
and NIST such as type assertions are added via
an external rehydration process.

• Search Engine Producer: This subcomponent
uses Kafka to send hypothesis / solution mes-
sages and status messages.

4.12 Future Work

We plan several areas of future work. First, we will
complete integration of BBN’s and Polaris Alpha’s re-
spective TA3 approaches, which we hope will comple-

14



ment each other. BBN’s approach emphasizes rigor-
ous relaxation of SIN nodes and produces smaller hy-
potheses, while Polaris Alpha’s approach emphasizes
more opportunistic proximity-based relaxation and
produces more hypothesis content. We will also opti-
mize each approach and anticipate greatly increased
accuracy and efficiency.

For BBN’s engine, we will optimize our query meta-
interpreter to lazily operate over the original node-
level statements, querying node cluster memberships
on demand. This optimization would obviate the
need for creating the (nk) larger cluster-level state-
ments. We will also perform better query optimiza-
tion: the interpreter currently attempts to match SIN
entry points and edges in an arbitrary order, leading
to unnecessary backtracking. Our enhanced engine
will match against entry points and associated edges
in parallel, constraining hypothesis growth to avoid
repeated backtracking. Relatedly, we will introduce
beam search logic to its query process so that it aban-
dons partial query answers unlikely to produce a valu-
able hypothesis.

BBN will also explore more useful cluster spaces.
Our current system’s performance is degraded by the
relatively unsophisticated Lucene text matching, we
will shift to using BERT and other textual embed-
ding and matching techniques. We also plan to use
Inductive Logic Programming (ILP) techniques to
learn cluster space definitions for complex ERE data
types. These spaces would cluster ERE instances
using learned logical rules built from a vocabulary
based on the cluster definitions described in the cur-
rent paper. Our hope is that this system would learn
appropriate levels of abstraction and produce higher
quality hypotheses. This approach would also incor-
porate TA2 clusters as vocabulary items, enabling us
to rigorously assimilate TA2 outputs instead of ignor-
ing them as we do now.

For Polaris Alpha’s engine, we will explore query
optimization strategies analogous to those described
above. We will also explore horizontal scaling of
the core engine. Finally, we will modify the se-
mantic softening done in the INP to make use
of Raytheon/BBN’s extracted semantic relationship
data. Doing so should not only help address limita-
tions associated with the relatively flat AIDA ontol-
ogy, but also help resolve previously unresolved entry
points.

5 Conclusion

Our SAMSON team developed novel solutions to the
problems of KB Construction and Hypothesis Gen-
eration using noisy, incomplete semantic data. Our
SAMSON system computes rigorous solutions over

datasets of over 100M triples in only a few hours for
TA2 and less than an hour for TA3. Both our TA2
and TA3 methods are novel, early-stage, and would
greatly benefit from further experimentation and op-
timization, likely making them more competitive in
future evaluations.
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