A Hybrid Model for Drug–Drug Interaction Extraction from Structured Product Labeling Documents

Diwakar Mahajan1*, Ananya Poddar1*, Yen-Ting Lin2

1IBM Research New York
2National Taiwan University Taipei

*Equal contributors, Presenters
DDI, a common cause of ADR, is the eight leading cause of death in the United States.

Need for Transforming SPL into structured information.

TAC 2019 DDI Challenge involves identification of drugs and interactions between them from SPLs.

End goal is to have an aggregated list of interactions.
Tasks

The participants may choose any one specific task described below or approach the tasks as each one building upon the previous tasks. Some tasks do necessarily require the output of previous tasks, e.g., Task 2 requires Task 1.

Task 1 Entity recognition task. Extract Mentions of Interacting Drugs/Substances and specific interactions at sentence level. This is similar to many NLP named entity recognition (NER) evaluations.

New for 2019 Mentions of Triggers are no longer evaluated.

Task 2 Relation identification task (sentence-level). Identify interactions at sentence level, including: the interacting drugs, the specific interaction types: pharmacokinetic, pharmacodynamic or unspecified, and the outcomes of pharmacokinetic and pharmacodynamic interactions. This is similar to many NLP relation identification evaluations.

Task 3 Normalization task. The interacting substance should be normalized to UNII, and the drug classes to MED-RT*. Normalize the consequence of the interaction to SNOMED CT if it is a medical condition. Normalize pharmacokinetic effects to National Cancer Institute Thesaurus codes.

New for 2019 Drug classes should be normalized to MED-RT.

New for 2019 Where applicable, we will consider multiple valid mappings for SpecificInteractions.

Task 4 Relation identification task (document-level). Generate a global list of distinct interactions for the label in normalized form.
<table>
<thead>
<tr>
<th>Annotation Type</th>
<th>Number of Annotations</th>
<th>Number of Irregular Annotations</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitant</td>
<td>9048</td>
<td>322 (3.5%)</td>
<td>Changes in blood pressure must be carefully monitored when LASIX is used with other antihypertensive drugs.</td>
<td>Interacting substance with a label drug i.e. drug, drug class or non-drug substance.</td>
</tr>
<tr>
<td>Specific Interaction</td>
<td>2744</td>
<td>279 (10.2%)</td>
<td>Changes in blood pressure must be carefully monitored when LASIX is used with other antihypertensive drugs.</td>
<td>Result of interaction.</td>
</tr>
<tr>
<td>Trigger</td>
<td>5345</td>
<td>1876 (35.1%)</td>
<td>Changes in blood pressure must be carefully monitored when LASIX is used with other antihypertensive drugs.</td>
<td>Trigger word or phrase for an interaction event.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annotation Type</th>
<th>Number of Annotations</th>
<th>Example</th>
<th>Description</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacokinetic</td>
<td>3176</td>
<td>Lithium generally should not be given with diuretics because they reduce lithium's renal clearance.</td>
<td>Indicated by triggers, involves effect on absorption, distribution, metabolism and excretion of interacting drug.</td>
<td>Contains effect attribute; Effect is always a NCI code (C#####)</td>
</tr>
<tr>
<td>Pharmacodynamic</td>
<td>4324</td>
<td>Changes in blood pressure must be carefully monitored when LASIX is used with other antihypertensive drugs.</td>
<td>Indicated by triggers and specific Interactions, is the effect of the drug combination on the organism.</td>
<td>Contains effect attribute; Effect is always of mention type specific interaction</td>
</tr>
<tr>
<td>Unspecified</td>
<td>2918</td>
<td>Avoid use of aliskiren with VASOTEC in patients with renal impairment.</td>
<td>Indicated by triggers, are general warning of risk against combining label drug with precipitant.</td>
<td>Does not contain effect attribute</td>
</tr>
</tbody>
</table>

211 Structured Product Labeling (SPL) documents were created in the gold-standard format by NLM and FDA.

Triggers were not evaluated in Task 1.
• A large proportion of *irregular entities* in data.

• Need for *complex tagging schemes* to handle irregular entities.

• Ground Truth Quality Issues
 ◦ Mention spans expressed with an invalid begin index of \(-1\).

 AGGRASTAT 2432 \(-1\) 16 “thrombocytopenia”

 ◦ Inconsistency in annotation for a specific piece of text.

 Revatio 2673 “Concomitant PDE-5 inhibitors: Avoid use with Viagra or other PDE-5 inhibitors.”

 ◦ Annotation of a sub-word, instead of a whole-word in sentence.

 Lotensin 3852 “Patients receiving coadministration of ACE inhibitor and mTOR inhibitor (temsirolimus, sirolimus) therapy may be at increased risk for angioedema”.
Methodology

Ground Truth (GT) corrections

- Timely feedback from Organizers helped improve quality of GT and thus our models.
- Developed semi-automated ways of correcting Ground Truth.

Replacing Relation Extraction (Task 2) with a NER Task – Interaction-Specific Trigger

- Trigger belonging to each relation type can be leveraged to indicate Interaction Types directly.
- The *Interaction-specific Triggers* are of three kinds: TRIG-K (Pharmacokinetic Trigger), TRIG-D (Pharmacodynamic Trigger) and TRIG-U (Unspecified Trigger).
- Thus we have 3 NER models – Precipitant, Specific Interaction, Interaction-specific Trigger
Methodology - II

Apply Precipitant Model
Identify all Precipitants

Remove Invalid Precipitants
Remove Label Drugs and Variants of Label Drugs (generic name etc.)

Apply SpecificInteraction Model
For TRIG-D, identify all SpecificInteractions

Interaction-Specific Trigger Model
Identify all Interactions and their types for valid Precipitants.
<table>
<thead>
<tr>
<th>Entity type</th>
<th>Entity subtype</th>
<th>Sentence Text</th>
<th>Mention Text(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>Continuous</td>
<td>Coadministration of antiplatelet agents and chronic NSAID use increases the risk of bleeding.</td>
<td>antiplatelet agents</td>
</tr>
<tr>
<td>Irregular</td>
<td>Overlapping</td>
<td>Avoid concomitant use of ELIQUIIS with P-gp and strong CYP3A4 inducers as it will decrease exposure to apixaban.</td>
<td>P-gp</td>
</tr>
<tr>
<td></td>
<td>Disjoint</td>
<td>As the blood pressure falls under the potentiating effect of LASIX, a further reduction in dosage or even discontinuation of other antihypertensive drugs may be necessary.</td>
<td>potentiating effect</td>
</tr>
</tbody>
</table>

The delimiter | indicates disjoint entities as expressed in ground truth.
BIOHD scheme has 7 labels \{B I O HB HI DB DI\} defined as follows:

- **HB** and **HI** refer to tokens that are shared by multiple concepts. These tokens are the overlapped portions of disjoint concepts. These tokens or sequence of tokens are referred to as head components.
- **DB** and **DI** refer to tokens that belong to disjoint concepts, however these tokens are not shared by multiple concepts. These tokens or sequence of tokens are referred to as non-head components.
- **B** and **I** are used to label the tokens that belong to continuous concepts and,
- **O** refers to tokens that are outside of concepts.

For multiple irregular entities, \textit{HDBIO1234} and \textit{NerOne} have been proposed, but they suffer from label sparsity and complex multi-model approach.
Proposed Hybrid Tagging Scheme – Encoding

• **Continuous Entities**: Use B and I tags to label tokens belonging to continuous concepts.

• **Overlapping Entities**: For a set of entities \(e \) which have shared token(s), merge the discontinuous spans of these entities to form a merged continuous entity \(m \). Replace the set \(e \) with the merged and now continuous concept \(m \). Use \(B \) and \(I \) tags to label tokens belonging to continuous concepts.

 E.g. \(\text{P-gp and strong CYP3A inhibitors} \).

• **Disjoint Entities**: For non-overlapping disjoint entities, we use DB and DI tags to label the concepts.

• **Others/Non Entities**: O is used to label tokens outside of the above entities.
• **Continuous Entities:**
 Coadministration/O of/O antiplatelet/B_PREC agents/I_PREC and/O chronic/O NSAID/O use/O increases/O the/O risk/O of/O bleeding/O.

• **Overlapping Entities:**
 Avoid/O concomitant/O use/O of/O ELIQUIS/O with/O P-gp/B_PREC and/I_PREC strong/I_PREC CYP3A/I_PREC inhibitors/I_PREC.

• **Disjoint Entities:**
 As/O the/O blood/O pressure/O falls/O under/O the/O potentiating/DB_SI effect/DI_SI of/O LASIX/O, a/O further/O reduction/DB_SI in/DI_SI dosage/DI_SI or/O even/O discontinuation/DB_SI of/O other/O antihypertensive/O drugs/O may/O be/O necessary/O.
Proposed Hybrid Tagging Scheme – Decoding & Post-Processing

- **Concept Decoding:**
 - Continuous concepts: Using BIO Tags
 - Disjoint concepts: Merge non-overlapping {DB DI} components

- **We use SpaCy model en_core_web_lg for:**
 - Sentence segmentation
 - Tokenization
 - Syntactic features

- **We leverage Dependency Parse Trees to:**
 - Identify *frequent patterns* to *extract overlapping entities* from merged entities
 - Few syntactic patterns were constructed to cover 89% of total overlapping entities
Decoding - Extracting Overlapping Entities

• Step 1: Identify **SHARE CHUNKS** and **SEGMENT CHUNKS** from span.
 - **SHARE CHUNKS**: Tokens are shared across irregular mentions
 - **SEGMENT CHUNKS**: Tokens are unique to each irregular mention

• Step 2: Merge each shared chunk with each segment chunk
PATTERN 1 – Example 1 *(Precipitant)*

P-gp | inhibitors, strong CYP3A4 inhibitors
PATTERN 1 – Example 2 (*Precipitant*)

P-gp | inhibitors, P-gp | inducers,
strong CYP3A4 inhibitors, strong CYP3A4 | inducers
reduce diuretic effects, reduce natriuretic effects, reduce antihypertensive effects
Decoding-Drug clean-up

- We use **RxNorm** to construct a medication knowledge base
- This contains *drug class* and *generic name* of label drug

reduce lithium’s renal clearance

reduce | renal clearance
Sequence Labeling Method

Diagram from Devlin et. al. (2018)
Sequence Labeling Method

We fine-tune BERT-Large, 16-head, 24-layer, 1024-hidden, Cased model, Whole Word Masking

| Extract contextualized embedding for each token | Add a fully connected layer on top of BERT to classify each token into entity <Tag> |

Token limit set to:

| Training = 180 | Inference = 512 |
Experimental Setup

• We split the provided dataset (211 SPLs) into train, validation and blind as 75%, 15% and 10% of the data respectively.

• We perform a 5-fold cross-validation for each entity type, thereby training 15 models (5 models per entity type).

• We employ a Max-Voting system.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Rate</td>
<td>1e-5</td>
</tr>
<tr>
<td>Number of epochs</td>
<td>20</td>
</tr>
<tr>
<td>Batch size</td>
<td>16</td>
</tr>
<tr>
<td>Dropout</td>
<td>0.1</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Amsgrad</td>
</tr>
<tr>
<td>Submission</td>
<td>Train Data Size</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>90%</td>
</tr>
<tr>
<td>2</td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typed-Mentions*</td>
<td>0.734</td>
<td>0.589</td>
<td>0.6538</td>
</tr>
<tr>
<td>Precipitant</td>
<td>0.748</td>
<td>0.665</td>
<td>0.704</td>
</tr>
<tr>
<td>SpecificInteraction</td>
<td>0.664</td>
<td>0.358</td>
<td>0.466</td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relation Type</td>
<td>0.809</td>
<td>0.643</td>
<td>0.717</td>
</tr>
<tr>
<td>Pharmacokinetic</td>
<td>0.866</td>
<td>0.65</td>
<td>0.742</td>
</tr>
<tr>
<td>Pharmacodynamic</td>
<td>0.893</td>
<td>0.64</td>
<td>0.71</td>
</tr>
<tr>
<td>Unspecified</td>
<td>0.784</td>
<td>0.65</td>
<td>0.711</td>
</tr>
<tr>
<td>Typed-Interactions*</td>
<td>0.583</td>
<td>0.423</td>
<td>0.4903</td>
</tr>
<tr>
<td>Pharmacokinetic</td>
<td>0.711</td>
<td>0.568</td>
<td>0.632</td>
</tr>
<tr>
<td>Pharmacodynamic</td>
<td>0.563</td>
<td>0.365</td>
<td>0.434</td>
</tr>
<tr>
<td>Unspecified</td>
<td>0.551</td>
<td>0.429</td>
<td>0.483</td>
</tr>
</tbody>
</table>

Results
Issues in Precipitant Extraction

- 29% False Negative and False Positives for Precipitants overlap
 - insulin lispro & insulin lispro product
 - serotonergic & drugs that affect the serotonergic neurotransmitter system
- Label drug variant removal step causes False Negatives

Complexities in SpecificInteraction Extraction

- 17% False Negative and False Positives for SI overlap
 - electrocardiographic changes | hypokalemia & hypokalemia
- 11% of SI discarded due to missing Precipitant
- Nuances of SI definition

Mention Extraction Errors cascading to Typed-Interaction

- Errors in Precipitant & SI cascade to errors in Typed-Interactions
- Significant difference between Relation Type and Typed-Interaction scores
- Low performance in Typed-Pharmacodynamic Interaction because of missing Precipitant & SI
Future Work

- Use external knowledge base (e.g. UMLS, RxNorm)
- Joint modeling of Precipitant, SI and Interaction-Specific Trigger
- Handle multiple disjoint entities
- Handle nuances of data representation (e.g. better sentence segmentation, tokenization)
Acknowledgments

• We would like to thank Dr. Ching-Huei Tsou (IBM Research) and Prof. Weichung Wang (National Taiwan University, Taiwan) for supporting this work.

• We would also like to thank Dr. Jennifer Liang (IBM Research) for her insightful and detailed feedback.
References

QUESTIONS?